The Transactions of the Korea Information Processing Society (한국정보처리학회논문지)
- Volume 4 Issue 12
- /
- Pages.3063-3068
- /
- 1997
- /
- 1226-9190(pISSN)
Polynomial Higher Order Neural Network for Shift-invariant Pattern Recognition
위치 변환 패턴 인식을 위한 다항식 고차 뉴럴네트워크
Abstract
In this paper, we have extended the generalization back-propagation algorithm to multi-layer polynomial higher order neural networks. The purpose of this paper is to describe various pattern recognition using polynomial higher-order neural network. And we have applied shift position T-C test pattern for invariant pattern recognition and measured generalization by mirror symmetry problem. simulation result shows that the ability for invariant pattern recognition increase with the proposed technique. Recognition rate of invariant T-C pattern is 90% effective and of mirror symmetry problem is 70% effective when the proposed technique is utilized. These results are much better than those by the conventional methods.
일반적인 역전파(Back Propagation)의 알고리즘을 다층 다항식 고차 뉴럴네트워크에 적용하여 위치 변환 패턴에 있어 정확한 인식을 할 수 있도록 네트워크의 구조를 개선했다. 본 논문의 목적은 다층 다항식 고차 뉴럴네트워크를 이용하여 여러 가지 패턴 인식이 가능한 이유를 자세히 논한다. 실제 예로는 일정한 문자 인식의 예제로 변형된 영문자 T-C 패턴을 가지고 실험했으며, 네트워크의 일반성(Generalization)을 측정하기 위해서는 거울반사 대칭(Mirror Symmetry)문제를 시뮬레이션 했다. 그 결과 종래의 모델보다 기술적인 우수성을 확인 할 수가 있었다. 본 연구가 제안한 방식에 의한 위치 변환된 T-C 패턴에 대하여서는 90%의 인식율을 얻을 수 있었으며, 일반성의 실험에서 거울반사 대칭(Mirror Symmetry)에 대한 인식율은 70%를 얻었다. 이 실험결과는 종래의 모델에서는 구하기 어려운 인식율이며 기존 연구와 비교한 결과 본 제안 방식의 기술적 우위성을 확연히 판단 할 수 있다.
Keywords