• 제목/요약/키워드: polymorphonuclear cells

검색결과 95건 처리시간 0.021초

In Vitro에서 개 말초혈액 탐식세포의 탐식능에 대한 케타민의 효과 (Ketamine Decreases Phagocytic Capacity of Canine Peripheral Blood Phagocytes In Vitro)

  • 강지훈;김민준;양만표
    • 한국임상수의학회지
    • /
    • 제25권2호
    • /
    • pp.73-78
    • /
    • 2008
  • 케타민은 N-methyl-D-aspartate (NMDA) 수용체의 비경쟁적인 길항제로 인의와 수의학에서 전신 마취제로 사용하는 약물이다. 본 연구진은 이전에 케타민이 개 말초혈액 백혈구의 순간산소과소비현상(oxidative burst activity)을 손상시킨다고 보고하였다. 현재 연구에서는 개 말초혈액 탐식세포의 탐식능(phagocytic capacity)에 대한 케타민의 효과를 검토하였다. 탐식능은 유세포 분석기로 분석하였다. 말초혈액 다형핵백혈구(peripheral blood polymorphonuclear cells; PMN)와 단구(monocytes)의 탐식능은 케타민의 직접 처리에 의해 감소하였으나 단핵구세포(peripheral blood mononuclear cells; PBMC) 분획에서의 탐식능은 케타민의 직접 처리에 의해 변화가 없었다. 말초혈액 다형핵백혈구와 단구의 탐식능은 케타민을 처리한 단핵구세포 배양상층액에 의해서도 감소하였다. 이상의 결과로부터 케타민은 호중구와 단구와 같은 개 말초혈액 탐식세포의 탐식능에 있어 직접적인 억제효과를 나타내며, 또한 케타민 처리 단핵구세포로부터 생산되는 가용성인자에 의해서도 탐식세포의 탐식능이 억제되는 것으로 사료되었다.

Quercetin Reduces Chemotactic Activity of Porcine Peripheral Blood Polymorphonuclear Cells

  • Hwa, Gyeong-Rok;Ahn, Changhwan;Kim, Hakhyun;Kang, Byeong-Teck;Jeung, Eui-Bae;Yang, Mhan-Pyo
    • 한국임상수의학회지
    • /
    • 제39권2호
    • /
    • pp.51-58
    • /
    • 2022
  • Quercetin, a flavonoid found in fruits and vegetables, exhibits a strong anti-inflammatory activity. The objective of this study was to examine the effect of quercetin on chemotactic activity of peripheral blood polymorphonuclear cells (PMNs) to culture supernatant from peripheral blood mononuclear cells (PBMCs) stimulated with lipopolysaccharide (LPS). In addition, we determined whether this effect is related to interleukin (IL)-8 and changes in cytoskeleton. The chemotactic activity of PMNs was evaluated by a modified Boyden chamber assay. Total cellular filamentous (F)-actin levels were measured by method of fluorescence microscopy. The levels of IL-8 mRNA and protein were measured by real time polymerase reaction method and enzyme-linked immunosorbent assay, respectively. Quercetin (0-50 µM) itself has no chemoattractant effect for PMNs. The culture supernatant from PBMCs (2 × 106 cells/mL) treated with LPS (1 ㎍/mL) showed remarkable increase in chemotaxis of PMNs. However, this effect was reduced dose-dependently by treatment with quercetin. In addition, PBMCs treated with LPS revealed enhanced levels in IL-8 protein and mRNA. Co-treatment of LPS with quercetin (50 µM) in PBMCs decreased IL-8 production and expression. Treatment of quercetin (0-50 µM) on PMNs to rpIL-8 (10 nM) decreased dose-dependently the chemotactic activity of PMNs. Treatment of quercetin on PMNs to IL-8 also reduced their total cellular F-actin level. These results suggested that quercetin attenuates chemotactic activity of PMNs, which is mediated by down-regulation of IL-8 production from LPS-stimulated PBMCs and inhibition of F-actin polymerization in PMNs.

In vitro response of rat microglia and human polymorphonuclear cells (PMN) to immunoactive compounds

  • Lombardi, Valter RM;Eetcheverria, Ignacio;Fernandez-Novoa, Lucia;Diaz, Joaquin;Seoane, Silvia;Cacabelos, Ramon
    • Advances in Traditional Medicine
    • /
    • 제5권3호
    • /
    • pp.216-230
    • /
    • 2005
  • Although the field of study in immune enhancing compounds is relatively new, natural products from plants represent a rich and promising source of novel molecules with immunomodulating properties, Microglial cells, the main immune effector cells of the brain, usually display a ramified morphology and low expression levels of immunologically relevant antigens such as MHC class I and class II. Since any compound which participates in activation of phagocytic cells contributes to the production of potentially toxic factors, the search for convenient in vitro test-systems and study of mechanisms of action of these agents are of great interest. Human blood polymorphonuclear (PMN) cells and primary microglial cells isolated from Sprague-Dawley rats were used as cellular screening tests for study of phagocytosis-stimulating action of immunomodulating agents. Numbers of phagocytic activity were evaluated by the phagocyte ingestion of yeast cells and NO-synthase activity, nitrite production, and nitroblue tetrazolium test were determined after phagocyte stimulation. It was possible to demonstrate that indexes of phagocytic activity can be used as quantitative indicators for measurement immunomodulating activity. As a positive control, Zymosan A-induced phagocytosis in both PMN cells and primary microglial cells was used. $IFN-{\gamma}$ (0.1 -1 U/ml) stimulated phagocytosis in PMN cells 1.2 times after 2 - 3 h incubation, although at higher concentrations (10 - 100 U/ml) it strongly inhibited phagocytosis. In a similar way, at higher concentrations, $IFN-{\gamma}$ (100 - 500 U/ml) suppressed phagocytosis in zymosan-A stimulated microglial cells. When Polypodium leucotomus, cambricum and vulgare extracts were tested alone, increased levels of phagocytosis were observed in PMN. In addition, microglial cells showed both increased phagocytosis and MHC class-II antigen expressions. Surprisingly, when PMN and microglia were treated with a combination of Polypodium and $IFN-{\gamma}$, phagocytosis was not inhibited. We did not find changes in NO-synthase activity and nitrite production in both microglia and PMN cells activated by different immunomodulating agents. These results indicate that primary microglial cell cultures as well as human PMN cells can provide reproducible quantitative results in screening phagocytic activity of different immunoactive compounds. Furthermore, both inhibitory or activation mechanisms might be studied using these in vitro experimental approaches.

Fucoidan Upregulates Chemotactic Activity of Porcine Peripheral Blood Polymorphonuclear Cells to Interleukin-8 by PI3K Activation

  • Kang, Song-Ai;Ahn, Changhwan;Kang, Byeong-Teck;Kang, Ji-Houn;Jeung, Eui-Bae;Yang, Mhan-Pyo
    • 한국임상수의학회지
    • /
    • 제34권2호
    • /
    • pp.70-75
    • /
    • 2017
  • Fucoidan increases the chemotactic activity of peripheral blood polymorphonuclear cells (PMNs) through interleukin (IL)-8 produced by peripheral blood mononuclear cells (PBMCs). It has been demonstrated that fucoidan can regulate the chemotaxis of PMNs by activating F-actin polymerization. The objectives of this study are to investigate the direct effect of fucoidan on the chemotaxis of porcine PMNs and to examine whether this effect is associated with changes in phosphoinositide 3-kinase (PI3K) activity. The chemotactic activity of porcine PMNs was evaluated by modified Boyden chamber assay. Akt phosphorylation activity, a main downstream of PI3K, was measured by Western blotting assay. Fucoidan itself has no chemoattractant effect for PMNs. However, direct treatment of PMNs with fucoidan showed higher chemotactic activity to porcine recombinant (pr) IL-8 than that of PMNs without fucoidan. The increased chemotactic activity of fucoidan-treated PMNs to pr IL-8 was suppressed by treatment of wortmannin, an inhibitor of PI3K. Treatment of PMNs with fucoidan also increased Akt phosphorylation level. This increase was also suppressed by wortmannin. These results suggested that fucoidan can upregulate chemotactic activity of porcine PMNs to IL-8, which is associated with PI3K activation.

돼지 말초혈액 다형핵 백혈구의 유주성에 있어서 conjugated linoleic acid의 면역증강효과 (Immunoenhancing Effects of Conjugated Linoleic Acid on Chemotactic Activity of Porcine Peripheral Blood Polymorphonuclear Cells)

  • Kim, Ju-hyang;Chung, Chung-soo;Lee, Chul-young;Yang, Mhan-pyo
    • 한국임상수의학회지
    • /
    • 제20권1호
    • /
    • pp.1-6
    • /
    • 2003
  • 돼지 말초혈액 다형핵 백혈구(polymorphonuclear cell; PMN)의 유주성에 있어서 conjugated linoleic acid(CLA) 이성체(CLA mixture, 10t-12c CLA, 9c-11t CLA, 9c-11c CLA 및 9t-11t CLA)의 면역증강 효과를 검토하였다. PMN에 대한 유주성은 Boyden chamber 변법으로 측정하였다. CLA 이성체들을 고농도(50∼200μM)로 사용하였을 경우 말초혈액 단핵구 세포(mononuclear cell; MNC) 및 PMN의 cell viability가 감소되거나 세포가 사멸하였다. 따라서 cell viability가 높고 세포독성을 나타내지 않는 20μM 농도로 유주활성 실험을 하였다. CLA 이성체들은 돼지 말초혈액 PMN의 유주활성에 직접적인 효과는 없었다. CLA 이성체로 배양한 MNC의 배양상층액 중 CLA mixture, 10t-12c CLA 및 9c-11t CLA 처리군에서는 PMN의 유주활성이 현저하게 증강되었으나 9c-11c CLA 및 9t-11t CLA로 배양한 MNC 배양상층액에서는 PMN의 유주활성이 나타나지 않았다. 이러한 유주성 증강효과는 checkerboard assay를 실시한 결과 진성의 유주활성이었다. 유주성 인자인 porcine recombinant (pr) interleukin(IL)-8을 이용하여 돼지 PMN에 대한 유주성을 검토한 결과, pr IL-8에 의한 PMN의 유주활성은 CLA로 배양한 MNC 배양상층액에 의한 것과 동등한 활성을 보였다. 또한 CLA로 배양한 MNC 배양상층액의 PMN에 대한 유주성을 anti-pr IL-8pAb를 사용하여 중화반응을 실시한 결과, CLA mixture로 배양한 MNC 배양상층액에 의해 증가된 PMN의 유주활성은 anti-pr IL-8 pAb 첨가에 의해 억제되어, 본 유주활성은 MNC에서 분비되는 IL-8으로 인한 것임을 강하게 시사하였다. 이상의 결과로부터 CLA 중 CLA mixture, 10t-12c CLA 및 9c-11t CLA 이성체가 돼지 말초혈액 다형핵 백혈구의 유주활성에 증강효과를 가지고 있으며, 이러한 증강효과는 CLA로 자극된 MNC에 의해 생성되는 IL-8 인자에 의한 것임을 알 수 있었다.

지질다당류를 투여한 비장세포에서 4,4'-diaminodiphenyl sulfone (dapsone)의 항염증 효과: 염증 관련 사이토카인의 선택적 억제 (Anti-inflammatory effects of 4,4'-diaminodiphenyl sulfone (dapsone) in lipopolysaccharide-treated spleen cells: selective inhibition of inflammation-related cytokines)

  • 문선영;주홍구
    • 대한수의학회지
    • /
    • 제55권3호
    • /
    • pp.199-204
    • /
    • 2015
  • 4,4'-diaminodiphenyl sulfone (dapsone) is a sulfone drug that has antibacterial effects on a variety of bacteria, especially Mycobacterium leprae; thus, it has been used to treat leprosy. Previous studies demonstrated that dapsone inhibits integrin-mediated adherence of neutrophils and production of prostaglandin $E_2$ by polymorphonuclear leukocytes. Hence, dapsone may act in immune cells and regulate cell-mediated inflammation processes. However, its anti-inflammatory effects remain unclear. The present study demonstrated that dapsone modulates the production of inflammation-related cytokines in immune cells. We employed the spleen cells of mice, which are major immune cells, and lipopolysaccharide (LPS) as a causative agent of inflammation for experiments. Dapsone induced a proportional change in splenocyte subsets and the apoptosis of spleen cells. Interestingly, dapsone decreased the production of tumor necrosis factor-alpha and interleukin (IL)-10, but not IL-6, in LPS-treated spleen cells. In other assays, we measured the dapsone-induced production of nitric oxide (NO) and the expression of activation markers of spleen cells. Dapsone decreased NO production in LPS-treated spleen cells. Taken together, our results demonstrate that dapsone has anti-inflammatory effects in immune cells and provide new insight into the potential uses of this agent.

Gamma-Radiation Induced Apoptotic and Inflammatory Degeneration of Mouse Ovarian Follicles : Informative Biological-End Point for Disaster-Prevention

  • Kim, Jin-Kyu;Chun, Ki-Jung;Lee, Chang-Joo;Lee, Kyoung-Hee;Kim, Seul-Kee;Yoon, Yong-Dal
    • Nuclear Engineering and Technology
    • /
    • 제33권3호
    • /
    • pp.255-260
    • /
    • 2001
  • In mammals, most of the follicles can not be ovulated, and instead, are degenerated throughout the entire reproductive period. However, the precise mechanism of follicle atresia is unknown. Three weeks old female mice (ICR strain) were ${\gamma}$-irradiated with a dose of LD$^{50}$ . Before irradiation (day 0) and at day 1, 2, and 3 after irradiation, the normal and atretic preantral and antral follicles of the left ovaries were morphologically observed. Atretic follicles at 2 days after irradiation had numerous cell debris, apoptotic cells and bodies, and polymorphonuclear leukocytes in the antral cavity. In severely atretic follicles, numerous polymorphonuclear leukocytes infiltrated into the follicle. The frequencies of atretic antral (58.0 $\pm$8.6) and preantral follicles (27.3$\pm$11.2) induced by ${\gamma}$-radiation increased to 94.0$\pm$3.4 and 86.9$\pm$7.6, respectively at 2 days after irradiation (p<0.05). The number of follicles with one or more neutrophils in the largest cross sections at 2 and 3 days after irradiation significantly increased (p<0.05). It can be concluded that ${\gamma}$-radiation triggers the recruitment of neutrophils into the follicles during degeneration. The ovarian follicles can make a role of informative biological end-point useful for disaster-prevention.

  • PDF

The Significance of the Mast Cell in Rheumatic Disease

  • Kim, Hyung-Min
    • 한국응용약물학회:학술대회논문집
    • /
    • 한국응용약물학회 2001년도 추계학술대회 및 정기총회
    • /
    • pp.14-20
    • /
    • 2001
  • Rheumatoid arthritis (RA) is one of the most typical rheumatic diseases, and is characterized by chronic inflammation, cartilage destruction and joint deformity [1,2]. During this process, profound hypertrophic changes of the synovium with infiltration of immune cells, increased vascularity, and hyperplasia result in the formation of a synovial pannus that invades cartilage and bone [3]. In early stages of RA, the synovial membrane begins to invade the cartilage. In established RA, the synovial membrane becomes transformed into inflammatory tissue, the pannus (Fig. 1). The cell types that occupy cartilage-pannus junctions include synovial macrophages, fibroblasts, mast cells, polymorphonuclear lymphocytes (PMNs), and displaced, probably differentiated condrocytes [4-6]. Recent studies of rheumatoid synovial tissue have demonstrated localized accumulations of mast cells and evidence of their activation/degranulation[7].

  • PDF

Binding of Galectin-1 to Neutrophils Enhanced by Activation

  • Cho, Somi K.;Cho, Moonjae
    • Journal of Applied Biological Chemistry
    • /
    • 제43권3호
    • /
    • pp.131-135
    • /
    • 2000
  • Human polymorphonuclear neutrophils undergo diaphoresis after a selectin-mediated rolling on the endothelial cells of the blood vessel wall. Extravasation is believed to be an integrin-mediated process. Galectin-1 is a small dimeric beta-galactoside-binding protein synthesized by the endotherial cells and present in the perivascular connective tissue. In this study we suggest the possible role of galectin-1 in extravasation of the activated neutrophils. MAL lectin binding study showed, that f-MetLeuPhe-activated neutrophils decrease surface sialylation and increase galectin-1 binding via exposure of new galectin-1 binding sites. Desialylated HL-60 cells also show the same decrease in MAL binding and increase in galectin-1 binding, an increase which was not observed in the presence of lactose. Galectin-1 blotting analysis detected two possible major ligands (approximately 120 and 160 kDa) of galectin-1 from the desialylated HL-60 cell lysates.

  • PDF