• Title/Summary/Keyword: polymorphism, single nucleotide

Search Result 854, Processing Time 0.024 seconds

A Design of Gene-based Nutritional and Exercise Management Service (유전자 기반 영양 관리 및 운동 관리 서비스 설계)

  • Lee, Hye-In;Park, Ju-Yeong;Kim, Young-Hwa;Kim, Hee-Cheol;Huh, Gyung-Hye
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2019.05a
    • /
    • pp.518-520
    • /
    • 2019
  • As life expectancy has increased, health status becomes an important factor on life. The Fourth Industrial Revolution has led to the development of a variety of healthcare devices and applications that make it easier and more convenient to manage health. In particular, the area of individual genetic analysis with Single Nucleotide Polymorphism (SNP) has expanded, and genetic information is used to treat and prevent diseases according to individual differences. This study analyzes the genetic information of individuals, that is, SNP variant, and identifies specific chronic disease risk groups such as obesity, diabetes and hypertension. After then we will propose a customized nutrition information service. In addition the service of regional exercise management will be provided, to encourage exercise based on walking courses and sports center information in residential areas. Based on the GPS, it will design the service of exercise management that can encourage exercise by providing walking course and sports center information in the residential area.

  • PDF

Single nucleotide polymorphism-based analysis of the genetic structure of the Min pig conserved population

  • Meng, Fanbing;Cai, Jiancheng;Wang, Chunan;Fu, Dechang;Di, Shengwei;Wang, Xibiao;Chang, Yang;Xu, Chunzhu
    • Animal Bioscience
    • /
    • v.35 no.12
    • /
    • pp.1839-1849
    • /
    • 2022
  • Objective: The study aims to uncover the genetic diversity and unique genetic structure of the Min pig conserved population, divide the nucleus conservation population, and construct the molecular pedigree. Methods: We used KPS Porcine Breeding Chip v1 50K for SNP detection of 94 samples (31♂, 63♀) in the Min pig conserved population from Lanxi breeding Farm. Results: The polymorphic marker ratio (PN), the observed heterozygosity (Ho), and the expected heterozygosity (He) were 0.663, 0.335, and 0.330, respectively. The pedigree-based inbreeding coefficients (FPED) was significantly different from those estimated from runs of homozygosity (FROH) and single nucleotide polymorphism (FSNP) based on genome. The Pearson correlation coefficient between FROH and FSNP was significant (p<0.05). The effective population content (Ne) showed a continuously decreasing trend. The rate of decline was the slowest from 200 to 50 generations ago (r = 0.95), then accelerated slightly from 50 to 5 generations ago (1.40

Analysis on Association of a SNP in the Chicken OBR Gene with Growth and Body Composition Traits

  • Wang, Ying;Li, Hui;Zhang, YuanDan;Gu, ZhiLiang;Li, ZhiHui;Wang, QiGui
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.19 no.12
    • /
    • pp.1706-1710
    • /
    • 2006
  • Leptin receptor (OBR) is a member of the class I cytokine receptor family. It signals mainly via the JAK/STAT pathway and plays an important role in regulating body energy storage and metabolism. This study was designed to investigate the effects of the OBR gene on chicken growth and body composition. Broiler lines selected divergently for or against abdominal fat were used. Primers for the exon9-region in the OBR gene were designed using chicken genomic sequences from the public genome domain. A C/A single nucleotide polymorphism (SNP) was found and its three genotypes (AA, AB and BB) were identified in this population. The results showed that the OBR polymorphism was associated with fatness traits, such as abdominal fat weight and abdominal fat percentage. This research suggests that OBR or a linked gene has effect on fat deposition in the chicken.

Association between ADIPOQ Gene Polymorphism rs182052 and Obesity in Korean Women

  • Doo, Mi-Ae;Kim, Yang-Ha
    • Genomics & Informatics
    • /
    • v.8 no.3
    • /
    • pp.116-121
    • /
    • 2010
  • The association between adiponectin concentration and obesity have been reported and genetic variations of the ADIPOQ gene are known to influence the plasmatic concentration of adiponectin. Therefore, we investigated the effect of AIPOQ single nucleotide polymorphism (SNP) on obesity-related variables, and their modulation by dietary intakes in Korean women. The subjects consisted of 3,217 Korean women aged 40-59 years participating in the Korean Genome Epidemiology Study (KoGES). The general characteristics, anthropometric variables, serum blood profiles were measured. Dietary intake was analyzed using the Food Frequency Questionnaire. Subjects with the T allele of AIPOQ rs182052 showed significantly higher obesity-related variables such as weight (p=0.005), BMI (p<0.000), fat body mass (p=0.005), and waist-hip ratio (p=0.007) than those with the C allele. Moreover, the rs182052 T allele was associated with an increased risk of obesity prevalence (p=0.019). However, there were not any significant interactions observed between the genotype of ADIPOQ rs182052 and dietary intake on BMI and fat body mass. These findings suggest that the obesity-related variables may be more dominantly affected by the genotype of ADIPOQ rs182052 than dietary intake in middle aged Korean women.

A Variant in RUNX3 Is Associated with the Risk of Ankylosing Spondylitis in Koreans

  • Cho, Sung-Min;Jung, Seung-Hyun;Chung, Yeun-Jun
    • Genomics & Informatics
    • /
    • v.15 no.2
    • /
    • pp.65-68
    • /
    • 2017
  • Ankylosing spondylitis (AS) is a chronic autoinflammatory disease that affects the spine and sacroiliac joints. Regarding its etiology, although HLA-B27 is known to be the strongest genetic factor of AS, much evidence suggests the potential contribution of non-MHC genes to the susceptibility to AS. Most of these non-MHC genes have been discovered in non-Asian populations; however, just some of them have been validated in Koreans. In this study, we aimed to identify additional AS-associated single-nucleotide polymorphism (SNP) candidates by replicating the candidate SNPs in Korean AS patients and healthy controls. For this, we selected three SNPs (rs11249215 in RUNX3, rs6556416 in IL12B, and rs8070463 in TBKBP1), which were previously reported as risk factors of AS but have not been studied in Koreans, and performed genotyping assays using a total of 1138 Korean samples (572 AS patients and 566 healthy controls). Of the three SNP candidates, one SNP in RUNX3 (rs11249215) was significantly associated with the risk of AS (odds ratio, 1.31; 95% confidence interval, 1.02 to 1.68, p = 0.03). These results will be helpful in elucidating the pathogenesis of AS and may be useful for developing AS risk prediction models in Koreans.

SNP-Based Fetal DNA Detection in Maternal Serum Using the HID-Ion AmpliSeqTM Identity Panel

  • Cho, Sohee;Lee, Ji Hyun;Kim, Chong Jai;Kim, Moon Young;Kim, Kun Woo;Hwang, Doyeong;Lee, Soong Deok
    • The Korean Journal of Legal Medicine
    • /
    • v.41 no.2
    • /
    • pp.41-45
    • /
    • 2017
  • Fetal DNA (fDNA) detection in maternal serum is a challenge due to low copy number and the smaller size of fDNA fragments compared to DNA fragments derived from the mother. Massively parallel sequencing (MPS) is a useful technique for fetal genetic analysis that is able to detect and quantify small amounts of DNA. In this study, seven clinical samples of maternal serum potentially containing fDNA were analyzed with a commercial single nucleotide polymorphism (SNP) panel, the HID-Ion $AmpliSeq^{TM}$ Identity Panel, and the results were compared to those from previous studies. Reference profiles for mothers and fetuses were not available, but multiple Y chromosomal SNPs were detected in two samples, indicating that fDNA was present in the serum and thereby validating observations of autosomal SNPs. This suggests that SNP-based MPS can be valuable for fDNA detection, thereby offering an insight into fetal genetic status. This technology could also be used to detect small amounts of DNA in mixed DNA samples for forensic applications.

Major gene interaction identification in Hanwoo by adjusted environmental effects (환경적인 요인을 보정한 한우의 우수 유전자 조합 선별)

  • Lee, Jea-Young;Jin, Mi-Hyun
    • Journal of the Korean Data and Information Science Society
    • /
    • v.23 no.3
    • /
    • pp.467-474
    • /
    • 2012
  • Human diseases and livestock economic traits are not typically the result of variation of a single genetic locus, but are rather the result of interplay between interactions among multiple genes and a variety of environmental exposures. We have used linear regression model for adjusted environmental effects and multifactor dimensionality reduction (MDR) method to identify gene-gene interaction effect of statistical model in general. Of course, we use 5 SNPs (single uncleotide polymorphism) which were studied recently by Oh et al. (2011). We apply the MDR (multifactor demensionality reduction) method on the identify major interaction effects of single nucleotide polymorphisms responsible for economic traits in a Korean cattle population.

A Modified Mutation Detection Method for Large-scale Cloning of the Possible Single Nucleotide Polymorphism Sequences

  • Jiang, Ming-Chung;Jiang, Pao-Chu;Liao, Ching-Fong;Lee, Ching-Chiu
    • BMB Reports
    • /
    • v.38 no.2
    • /
    • pp.191-197
    • /
    • 2005
  • Although the human genome has been nearly completely sequenced, the functions and the roles of the vast majority of the genes, and the influences of single nucleotide polymorphisms (SNPs) in these genes are not entirely known. A modified mutation detection method was developed for large-scale cloning of the possible SNPs between tumor and normal cells for facilitating the identification of genetic factors that associated with cancer formation and progression. The method involves hybridization of restriction enzyme-cut chromosomal DNA, cleavage and modification of the sites of differences by enzymes, and differential cloning of sequence variations with a designed vector. Experimental validations of the presence and location of sequence variations in the isolated clones by PCR and DNA sequencing support the capability of this method in identifying sequence differences between tumor cells and normal cells.

Single Nucleotide Polymorphisms (SNPs) for Advanced Genomic Research in Sericulture

  • Vijayan, Kunjupillai
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.19 no.1
    • /
    • pp.143-154
    • /
    • 2009
  • Single nucleotide polymorphisms (SNPs) are the most frequent form of variation in the genome of any organism. Owing to their greater abundance, they are considered useful for identifying cultivars, construction of higher density linkage maps, and detection of genes (QTLs) associated with complex agronomic traits and diseases. Although, SNPs have been used recently for constructing a high density genetic map in silkworm and a set of 118 SNPs have been identified in tasar silkworms, not much progress has been made in sericulture to utilize the vast potential of SNPs. Thus, this review mainly focuses on some of the important methods of SNP discovery, validation and genotyping. Emphasis has also been given to the possible uses of SNP genotyping in the improvement of silkworms and their host plants.

Detection of single-nucleotide polymorphism in RPB2 of Wolfiporia hoelen strains and assessment of its applicability for strain breeding (복령 균주의 RPB2 유전자 내 단일염기다형성 및 육종 활용성 분석)

  • Su Yeon, Kim;Mi-Jeong, Park;Seong Hwan, Kim;Kang-Hyeon, Ka
    • Journal of Mushroom
    • /
    • v.20 no.4
    • /
    • pp.199-207
    • /
    • 2022
  • The demand for novel strains has been rising in the domestic market to increase the production of sclerotia from Wolfiporia hoelen. To improve strain breeding efficiency, we investigated whether single-nucleotide polymorphisms (SNPs) in the RNA polymerase II subunit (RPB2) gene, which may be linked to the mating type locus, are useful for distinguishing monokaryons from dikaryons in Korean W. hoelen strains. We designed a specific primer set to efficiently amplify a region of RPB2 using PCR with the genomic DNA of 12 cultivated strains and 31 wild strains of W. hoelen collected from Korea. Nucleotide sequences of the PCR-amplified RPB2 genes were determined and analyzed for the presence of SNPs among the 43 W. hoelen strains. Previously reported SNP loci were detected in the RPB2 gene of all W. hoelen strains tested. However, these previously reported SNP loci could not be applied to differentiate monokaryons from dikaryons in approximately one-third of Korean wild strains with homozygous genotypes. Three additional SNPs in the RPB2 gene, which may improve the ability to distinguish monokaryons from dikaryons, were identified by searching through the multiple sequence alignments of the 43 W. hoelen strains. The applicability of these three novel SNPs, together with the previously known SNPs, in the RPB2 gene to W. hoelen strain breeding was verified by examining the hybrid strains and their parental strains.