• Title/Summary/Keyword: polymorphic

Search Result 1,372, Processing Time 0.026 seconds

Assessment of genetic diversity and population structure of commercial button mushroom (Agaricus bisporus) strains in Korea (한국의 상업적 양송이 균주의 유전적 다양성 및 집단 구조)

  • Lee, Hwa-Yong;An, Hye-jin;Oh, Youn-Lee;Jang, Kab-Yeul;Kong, Won-Sik;Ryu, Ho-jin;Chung, Jong-Wook
    • Journal of Mushroom
    • /
    • v.17 no.4
    • /
    • pp.171-178
    • /
    • 2019
  • Agaricus bisporus is a functional food and among the most widely cultivated mushrooms in the world. In this study, we analyzed the genetic diversity and population structure of 23 Korean and 42 foreign A. bisporus cultivars using SSR (Simple sequence repeat) markers. Genetic diversity of A. bisporus cultivars was as follows: number of alleles was approximately 13; observed and expected heterozygosity were approximately 0.59 and 0.74, respectively; and polymorphic information content value was about 0.71. A. bisporus cultivars were divided into three groups using distance-based analysis. Genetic diversity of Group 2, which consisted of cultivars from various countries, was high. In addition, model-based subpopulations were divided into two, and the genetic diversity of Pop2 (Population 2), which had many cultivars, was high. The results of this study could be used in a breeding program for A. bisporus, such as the development of new genetic resources and securing diversity.

Identification of Chromosomal Band Markers of the Korean Native Chicken (한국재래계의 염색체 분염 표지 분석)

  • Baik, K. H.;Lee, C. Y.;Sang, B. D.;Choi, C. H.;Kim, H. K.;Sohn, S. H.
    • Journal of Animal Science and Technology
    • /
    • v.45 no.1
    • /
    • pp.1-12
    • /
    • 2003
  • The present study was carried out to establish the standard karyotype of the Korean Native Chicken and to find their chromosomal band markers using high-resolution banding technique. Chromosome analysis was performed on early chick embryos following in vitro culture of fertilized eggs of the yellow-brown and the red-brown lines of the Korean Native Chicken which had been established at National Livestock Research Institute. The high-resolution banding of the chromosome was achieved by treating the embryos with ethidium bromide and colchicine during culture. On GTG-banding, the Korean Native Chicken exhibited a typical chick banding pattern in all the macrochromosomes. Overall chromosomal morphology and positions of typical landmarks of the Korean Native Chicken were virtually identical to those of White Leghorn and International System for Standardized Avian Karyotypes(ISSAK). However, the lengths and G-band numbers of the Korean Native Chicken macrochromosomes were greater than those of White Leghorn and ISSAK. Especially in chromosomes 1 and Z, the Korean Native Chicken exhibited more separated bands in compared with ISSAK. In C-banding patterns, although a lot of observed cells had C-band polymorphic patterns, almost the Korean Native Chicken macrochromosomes had heterochromatic C-band on centromeres and/or near terminal part. However, the heterochromatic C-band was constantly observed at the end of q-arm of Z chromosomes and on the whole W chromosome. In addition, the Korean Native Chicken exhibited distinctive heteromorphic patterns of C-bands on the centromere of chromosome 3 and at the end of q-arm of Z chromosome between homologous chromosomes.

Study for Morphological and Genetic Characteristics of Chinese Milk Vetch (Astragalus sinicus L.) to Select Suitable Line in Central Area of Korea (중부지방 적합 자운영 (Astragalus sinicus L.) 형질 특성 및 유전적 연관성 분석에 관한 연구)

  • Hong, Sun Hee;Kim, Jae Yoon
    • Korean Journal of Environmental Biology
    • /
    • v.34 no.3
    • /
    • pp.169-176
    • /
    • 2016
  • Although chemical fertilizers have a quick effect and broad applicability to agricultural fields, they have caused many problems like increasing soil acidity or decreasing soil organic matters. Environmental-friendly agriculture has been attempted in various ways such as organic agriculture, natural farming, low input and sustainable agriculture. The common interest of all environmental-friendly systems is to decrease burden to agricultural environment by low input of agricultural labor and materials. This study was conducted to estimate overwintering capacity and genetic distance among Chinese Milk Vetch (Astragalus sinicus, CMV) collections based on morphological characteristics and AFLP (Amplified fragment length polymorphism) analysis. Furthermore, the effect of CMV as green manure was observed in mix-cultured paddy fields with rice, sesame and sweet-potato. An another objective of this study was also to compare the pattern of weed occurrence in paddy fields with or without CMV and different rice transplanting times. The CMV collected from Paju district in central region of Korea was successively occurring through self-reseeding without artificial management. However, there was no noticeable difference in growth habit between Paju native CMV and introduced CMV from China which is currently used in farm fields. On the basis of multi-dimensional scaling and tree analyses, there are no significant difference of agricultural growth characteristics among Paju and chinese collections only excepting leaf angle and root length. The flowering time of Gurye collection was fast for 1 week as compared to other collections. AFLP that was commonly used for plant classfication, was applied to exam the genetic variation of CMV collections. Total 579 PCR products and 336 polymorphic fragments were generated using 8 primer pairs.

Construction of a Microsatellite DNA Profile Database for Pear Cultivars and Germplasm (배 품종 및 유전자원에 대한 Microsatellite DNA 프로파일 데이터베이스 구축)

  • Hong, Jee-Hwa;Shim, Eun-Jo;Kwon, Yong-Sham
    • Horticultural Science & Technology
    • /
    • v.35 no.1
    • /
    • pp.98-107
    • /
    • 2017
  • A DNA profile database was constructed to investigate the genetic relatedness of 72 germplasm samples of Pyrus and related cultivars using microsatellite markers. Three P. pyrifolia, four P. commus, and one P. betulifolia cultivars with different morphological traits were screened using 387 pairs of microsatellite primers. A core set of 11 primer pairs was selected to obtain 133 polymorphic amplified fragments meeting three criteria: high polymorphism information contents (PIC), high repeatability, and distinct allele patterns. The number of alleles per locus ranged between 4 and 22. Average PIC was 0.743 (range: 0.557 - 0.879). Cluster analysis using the unweighted pair - group method with arithmetical average (UPGMA) separated the 72 pear cultivars and germplasm samples into four major groups: Chinese, European pears, and a cluster of 55 Asian pears that could be reclassify into two subcluster, I - $1^{st}$ and II - $2^{nd}$, according to pedigree information. Almost all of the cultivars were discriminated by 11 microsatellite marker genotypes. The microsatellite DNA profile database may be utilized as tool to verify distinctness, uniformity, and stability between candidate cultivar, and to verify in the distinctness of existing cultivars.

Development of Sequence Characterized Amplified Regions (SCAR) Showing for Cheju Native Horse (품종 특이성을 이용한 제주마 판별 표지인자 재발)

  • Cho Byung Wook
    • Journal of Life Science
    • /
    • v.15 no.3 s.70
    • /
    • pp.474-478
    • /
    • 2005
  • This study was conducted to analyze genetic characteristics and to develop the specific marker for Cheju native horse (Coo) at the level of sequence characterized amplified regions (SCARs). We collected blood samples from Cheju native horse and Thoroughbred horse (Th) and obtained genomic DNA from the blood of 50 individuals randomly selected within the breeds. Seven hundred primers were chosen randomly and were used to examin the polymorphism and 40 kinds of primers showed polymorphic RAPD band patterns between two breeds. Thirty primers of them showed horse specific bands. With the primer MG 30, amplified band of 2.0 kb showed the specificity to Cheju native horse (Cnh). Additionally MG 53 detected the thoroughbred horse (Th) specific markers at size of 2.3 kb. As the next, 2.3 kb band from MG 53 was checked with the all individuals from all the breeds of this study, and it maintained the reproducible breed specificity to thoroughbred horse (Th). With this results, 2.3 kb band was cloned into plasmid vector and sequenced bidirectionally from both ends of the cloned fragment. With the obtained sequences 10 nucleotide extended primers including the original arbitray primer were designed as a SCARs primer. Finally, the primer with extended sequence showed the reproducible breed differentiation pattern and it was possible to identify Cheju native horse (Cnh) from other breeds. The SCARs marker 2.3 kb from MG 53 could be used to identify Cheju native horse (Cnh) for not only registration but also horse breeding programe.

Genetic Variation and Differences within and between Populations of Cultured and Wild Bullhead (Pseudobagrus fulvidraco) Revealed by RAPD-PCR

  • Yoon Jong-Man;Kim Gye-Woong;Park Hong-Yang
    • Reproductive and Developmental Biology
    • /
    • v.29 no.4
    • /
    • pp.213-221
    • /
    • 2005
  • We used nine decamer primers to generate DNA fragment sizes ranging from 100 bp to 1,600 bp from two bullhead (Pseudobagrus fulvidraco) populations of Dangjin in Korea. 376 fragments were identified in the cultured bullhead population, and 454 in the population of wild bullhead from Dangjin: 287 specific fragments $(76.3\%)$ in the cultured bullhead population and 207 $(45.6\%)$ in the wild bullhead population. On average, a decamer primer was used to generate 34.2 amplified products in a cultured bullhead. A RAPD primer was used to generate an average of 3.1 amplified bands per sample, ranging between 2.5 and 6.0 fragments in this population. Nine primers also generated 24 polymorphic fragments (24/376 fragment, $6.4\%$) in the cultured bullhead population, and 24 (24/454 fragments, $5.2\%$) in the wild bullhead population. The OPA-16 primer, notably, produced which 11 out of 11 bands $(100\%)$ were monomorphic in the wild bullhead population. 110 intra-population-specific fragments, with an average of 12.2 per primer, were observed in the cultured bullhead population. 99 fragments, with an average of 11.0 per primer, were identified in the wild bullhead. Especially, 55 inter-population-common fragments, with an average of 6.1 per primer, were observed in the two bullhead populations. The bandsharing value (BS value) of individuals within the wild bullhead population was substantially higher than was determined in the cultured bullhead population. The average bandsharing value was $0.596\pm0.010$ within the cultured bullhead population,. and $0.657\pm0.010$ within the wild bullhead population. The dendrogram obtained with the nine primers indicates two genetic clusters, designated cluster $1\;(CULTURED\;01\~CULTURED\;11)$, and cluster $2\;(WILD\;12\~WILD\;22)$. Ultimately, the longest genetic distance displaying significant molecular differences was determined to exist between individuals in the two bullhead populations, namely between individuals WILD no. 19 of the wild bullhead population and CULTURED no. 03 of the cultured bullhead population (genetic distance = 0.714). RAPD-PCR allowed us to detect the existence of population discrimination and genetic variation in Korean population of bullhead. This finding indicates that this method constitutes a suitable tool for DNA comparison, both within and between individuals, populations, species, and genera.

Complete Mitochondrial Genome Sequence and Genetic Diversity of Duroc Breed (돼지 Duroc 품종에서 미토콘드리아 유전체 서열의 특성과 집단의 유전적 다양성)

  • Cho, 1.C.;Han, S.H.;Choi, Y.L.;Ko, M.S.;Lee, J.G;Lee, J.H;Jeon, J .T
    • Journal of Animal Science and Technology
    • /
    • v.46 no.6
    • /
    • pp.937-946
    • /
    • 2004
  • Duroc is widely used to improve the meat quality and productivity. To elucidate the phylogenetic relation and the sequence specificity for the maternal property, the complete sequence of mitochondrial genome was determined and the population diversity of Duroc was investigated in this study. The length of mtDNA tested is 16,584-bp. There are several insertion/deletion mutations in the control region and coding regions for tRNA and rRNA, respectively, but not in peptide-coding regions. Four peptide-coding genes(COⅡ, COⅢ, ND3 and ND4) showed incomplete termination codon sequences such as T--, and two(ND2 and ND4L) did alternative initiation codons(AIC), respectively. Especially, the initiation codon sequences of ND2 gene were polymorphic in this population. Polymorphisms were detected in 11-bp duplication motif within control region as well as ND2 and CYTB. Variation patterns observed from the tests on three mtDNA regions were linked completely and then two haplotypes obtained from combining the data dividing this population. Duroc mtDNA is observed at the European pig cluster in the phylogenetic tree, however, the results from the population analyses supported previous opinions. This study suggests that the breed Duroc was mainly originated from the European pig lineage, and Asian lineage was also used to form the pig breed Duroc as maternal progenitors.

Multiple Confirmation and RAPD-genotyping of Enterobacter sakazakii Isolated from Sunsik (선식에서 분리한 Enterobacter sakazakii의 복합동정 및 RAPD를 이용한 genotyping)

  • Choi, Jae-Won;Kim, Yun-Ji;Lee, Jong-Kyung;Kim, Young-Ho;Kwon, Ki-Sung;Hwang, In-Gyun;Oh, Se-Wook
    • Korean Journal of Food Science and Technology
    • /
    • v.40 no.1
    • /
    • pp.101-105
    • /
    • 2008
  • Enterobacter sakazakii is implicated in severe forms of neonatal infections such as meningitis and sepsis. This organism has been isolated from a wide range of foods, including cheese, vegetables, grains, herbs, and spices, but its primary environment is still unknown. Generally, dried infant milk formula has been epidemiologically identified as the source of E. sakazakii. Sunsik (a powdered mixture of roasted grains and other foodstuffs) is widely consumed in Korea as a side dish or energy supplement. Sunsik is consumed without heat treatment; thus, lacking an additional opportunity to inactivate foodborne pathogens. Therefore, its microbiological safety should be guaranteed. In this study, the prevalence of E. sakazakii was monitored in 23 different sunsik component flours, using FDA recommended methods; but E. sakazakii medium (Neogen) and Chromogenic E. sakazakii medium (Oxoid) were used as the selective media. In total, presumptive E. sakazakii strains were isolated from 8 different sunsik powders. Subsequently, an API 20E test was conducted, and 15 strains from 5 different sunsik flours (sea tangle, brown rice, non-glutinous rice, cheonggukjang, dried anchovy) were confirmed as E. sakazakii. Fifteen strains were again confirmed by PCR amplification, using three different primer sets (tDNA sequence, ITS sequence, 16S rRNA sequence), and compared to ATCC strains (12868, 29004, 29544, 51329). They were once again confirmed by their enzyme production profiles using an API ZYM kit. Finally, RAPD (random amplified polymorphic DNA)-genotyping was carried out as a monitoring tool to determine the contamination route of E. sakazakii during processing.

Chlorophyll Content and Genetic Variation of Ginkgo biloba L. Planted on the Street in Seoul (도심지 은행나무 가로수의 엽록소 함량 및 유전변이 특성)

  • 김판기;구영본;이재천;배상원;이용섭;정용문
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.3 no.2
    • /
    • pp.114-120
    • /
    • 2001
  • Ginkgo biloba L. has been planted in the city as street trees because reported as resistant species to air pollutant. Especially, the trees planted on the street of 'Cheongro', Mt. 'Nam', and 'Jamsil' have been exposed to air pollutant for a long time. This study was conducted to examine chlorophyll contents and genetic variation of Ginkgo biloba in the areas. Chlorophyll contents measured in the above three areas were variable although the the diameter at breast height measured in 'Cheongro' and Mt. 'Nam' were constant. In addition, the result showed positive relation between chlorophyll contents and DBH in this study. Eight enzyme systems were analyzed in megagametophytes which were collected in the areas and separated to two groups based on chlorophyll contents. All the enzymes appeared to be polymorphic : Got-2, Pgi-2, Pgm, Acon, Mnr, Mdh, Skdh, and 6Pgd. The sensitive (S) groups varied from 1.253 to 2.571 in the genetic diversity and the tolerant (T) groups ranged from 1.416 to 2.825. The observed single locus heterozygosities (H$_{0}$) ranged from 0.056 to 0.611 in the S groups, and from 0.179 to 1.643 in the T groups. The expected heterozygosities (H$_{e}$) ranged from 0.208 to 0.629 in the S groups and from 0.321 to 0.658 in the T groups. In addition, the H$_{0}$ values averaged over all loci were 0.326 for the T groups and 0.299 for the S group, respectively. A difference between the two groups was 0.027. The T groups had the unique alleles and genotypes and all the parameters for genetic diversity showed that the T groups had higher genetic diversity than the S groups.s. genetic diversity than the S groups.

  • PDF

Identification of Rice Variety Using Simple Sequence Repeat (SSR) Marker (Simple sequence repeat (SSR) marker를 이용한 벼 품종 식별)

  • Kwon, Yong-Sham;Park, Eun-Kyung;Park, Chan-Ung;Bae, Kyung-Mi;Yi, Seung-In;Cho, Il-Ho
    • Journal of Life Science
    • /
    • v.16 no.6
    • /
    • pp.1001-1005
    • /
    • 2006
  • The objective of this study was carried out to evaluate the suitability of simple sequence repeat (SSR) markers for genetic diversity assessment and identification of rice varieties. The 23 primers selected from 50 SSR primers showed polymorphisms in the 21 rice varieties. The 2 to 9 SSR alleles were detected for each locus with an average of 3.00 alleles per locus. The polymorphism information content (PIC) ranged form 0.091 to 0.839. Based on band patterns, UPGMA cluster analysis was conducted. These varieties were separate into 4 groups corresponding to rice ecotype and pedigree information and genetic distance of cluster ranging from 0.59 to 0.92. The 4 SSR primer sets (RM206, RM225, RM418, RM478) selected form 23 polymorphic primers were differentiated all the rice variety from each other by markers genotypes. These markers may be used wide range of practical application in variety identification of rice.