• Title/Summary/Keyword: polymerization reaction

Search Result 612, Processing Time 0.03 seconds

Temperature control of a batch PMMA polymerization reactor using adaptive predictive control algorithm

  • Huh, Yun-Jun;Ahn, Sung-Mo;Rhee, Hyun-Ku
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1995.10a
    • /
    • pp.51-55
    • /
    • 1995
  • An adaptive unified predictive control (UPC) algorithm is applied to a batch polymerization reactor for poly(methyl methancrylate) (PMMA) and the effects of controller parameters are investigated. Computational studies are performed for a batch polymerization system model developed in this study. A transfer function in parametric form is estimated by recursive least squares (RLS) method, and the UPC algorithm is implemented to control the reactor temperature on the basis of this transfer function. The adaptive unified predictive controller shows a better performance than the PID controller for tracking set point changes, especially in the latter part of reaction course when gel effect becomes significant. Various performance can be acquired by selecting adequate values for parameters of the adaptive unified predictive controller; in other words, the optimal set of parameters exists for a given set of reaction conditions and control objective.

  • PDF

Olefin Polymerization Activity and Crystal Structure of Alkyliron(Ⅲ) Porphyrin Complexes

  • Oh, Yung-Hee;Swenson, Dale;Goff, Harold M.
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.2
    • /
    • pp.167-172
    • /
    • 2003
  • Alkyliron(Ⅲ) porphyrins, n-butyliron(Ⅲ) tetraphenylporphyrin, (TPP)Fe-Bu and n-butyliron(Ⅲ) tetrakis-(pentafluorophenyl)porphyrin, $(F_{20}TPP)Fe-Bu$ have been evaluated as suitable for olefin free-radical polymerization. Butyl radicals dissociated from n-butyliron(Ⅲ) porphyrin initiated the polymerization reaction, but the ratio of the propagation was low. The GCMS analysis of the reaction mixture of nbutyliron(Ⅲ) porphyrin and styrene has revealed several products containing two butyl groups, while traces of b-hydrogen-abstracted products were observed. The crystal structure of (TPP)Fe-Bu has been determined. The structure of the n-butyliron(Ⅲ) porphyrin reveals the compound containing five-coordinated iron with the average Fe-N distance of 1.973(1) Å and Fe-C of 2.030(2) Å. The iron atom is displaced by 0.137Å from a four nitrogen mean plane. Crystal system is triclinic, and space group is P-1.

Ultrasound Energy Effect as Initiator of Polystyrene Latex Polymerization (Polystyrene Latex 제조공정에서 초음파 에너지의 개시효과)

  • Lee, Seung-Bum;Kim, Won-Il;Hong, In-Kwon
    • Elastomers and Composites
    • /
    • v.31 no.3
    • /
    • pp.175-182
    • /
    • 1996
  • Polymer latices, prepared from the emulsion polymerization of vinyl monomer compounds, are widely used for many industrial applications. Included among these are uses in paints, adhesives, flocculants, and heavy-duty plastics as well as their original use in synthetic rubber compounds. The emulsion polymerization process with chemical initiator has chemical disadvantage such as removal of initiator which was left after polymerization. In this study, polystyrene latex was prepared by using ultrasonic irradiation which generate the free radical, and then it was analyzed by GPC. Reaction temperature hardly have an effect on average molecular weight. Average molecular weight is increased by increasing amount of surfactant, i.e. SDS, but polydispersity is decreased. After 90 minutes of reaction time, increase and decrease of average molecular weight Is repeated. It is proposed that monodisperse polymer is obtained by controlling ultrasonic irradiation time and surfactant concentration.

  • PDF

Kinetic Features of the Cobalt Dihalide/Methylaluminoxane Catalytic System in 1,3-Butadiene Polymerization

  • Nath Dilip Chandra Deb;Fellows Christopher M.;Shiono Takeshi
    • Macromolecular Research
    • /
    • v.14 no.3
    • /
    • pp.338-342
    • /
    • 2006
  • The kinetic features of polymerization with an active site comprising cobalt dihalides ($CoX_2$, where X=Cl, Br, I) activated by methylaluminoxane (MAO) were investigated in 1,3-butadiene polymerization. The catalytic system exhibited the characteristic features of living polymerization. The initiation ($k_i$) and propagation ($k_p$) rate coefficients were estimated using the kinetic model for slow initiation previously reported by Shiono et al. The energy of activation fur the propagation reaction was calculated to be 27-30 $kJmol^{-1}$. The marked changes in reaction rate observed with different halides could be adequately described in terms of variations in the initiation process, with the same Arrhenius curve fitting propagation rate coeffcients estimated from all three halides, suggesting that the halide does not participate in the growing chain end.

The Comparison between Ziegler-Natta and Zirconocene Catalyst on Reaction Conditions and Physical Properties in Polymer in Propylene Polymerization (프로필렌 중합에 있어서 Ziegler-Natta 촉매와 Zirconocene 촉매의 중합 조건과 중합체의 물성 비교)

  • 이성철;남영곤;정석진
    • Polymer(Korea)
    • /
    • v.24 no.4
    • /
    • pp.437-444
    • /
    • 2000
  • Propylene polymerizations were carried out by using rac-Et(Ind)$_2$ZrCl$_2$ (Zirconocene catalyst) and a commercial third generation Ziegler-Natta catalyst in a semibatch reactor. From the polymerization reactions, the optimum reaction conditions and the physical properties of polymers produced from each catalyst system were investigated. The optimum reaction temperatures of rac-Et(Ind)$_2$ZrCl$_2$ and Ziegler-Natta catalyst were 5$0^{\circ}C$, 4$0^{\circ}C$, respectively. On the basis of the results for the produced polymer particle size distributions and the catalytic activities of polymerization reaction, the reaction temperature should be considered as an important factor for the successful polymerization reactions. Especially, the polymer was conglomerated in the higher reaction temperature. It was found that there was an upper limitation to co-catalyst concentration. Reaction rates and polymer yields rather decreased with increasing the concentration of to-catalyst, i.e., MAO and TEAl affected only polymerization activities, but the PEEB in Ziegler-Natta catalyst system affected isotactic indexes of produced polymer as well as activities. Based on these observations, the production yield seems to exhibit a first order lineal relationship to the partial pressure of monomer.

  • PDF

Kinetic Study on the Cationic Polymerization of Glycidyl Azide Monomer(GAM) by Real-Time In-suti IR (실시간 In-situ IR을 이용한 Glycidyl Azide Monomer(GAM)의 양이온중합 반응속도 연구)

  • Kim, Hyoung-Sug;Kim, Kwan-Yung;Kang, Shin-Choon;Noh, Si-Tae;Kim, Jin-Seuk;Yu, Jae-Chul;Choi, Keun-Bae
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.12 no.2
    • /
    • pp.228-235
    • /
    • 2009
  • We synthesized glycidyl azide monomer(GAM) as a monomer for polymerization of glycidy azide polymer(GAP) which is a promising energetic prepolymer for a plastic-bonded explosive. Using quantitative real-tim in-situ infrared(in-situ IR) spectroscopy, kinetic study on the cationic ring opening polymerization of GAM was carried out. The reaction rate was obtained from monitoring the change of ether C-O stretching band($1050cm^{-1}$) in series IR spectra. The reaction was in accordance with the first-order reaction law for each of reaction temperature at 100/1 mole ratio of [GAM]/[$BF_3*etherate$]. In the ring opening polymerization of GAM, with ratio of [GAM]/[$BF_3*etherate$] to equal 100/1 at various temperature, the activation parameters obtained from the evaluation of kinetic data were ${\Delta}H^*$=14.34kcal/mol, ${\Delta}S^*=-12.31cal/mol{\cdot}K$ and $E_a$=14.89kcal/mol.

Preparation of Poly(butyl methacrylate) Composite Beads containing Carbon Black by Suspension Polymerization (현탁중합법에 의한 카본블랙을 함유하는 폴리뷰틸메타크릴레이트 복합체 입자의 합성)

  • Moon, Ji-Yeon;Park, Moon-Soo
    • Elastomers and Composites
    • /
    • v.43 no.3
    • /
    • pp.157-165
    • /
    • 2008
  • Suspension polymerization was carried out to synthesize poly(butyl methacrylate) (PBMA) composite particles containing carbon black. Water was selected as a reaction medium, hydrophobic silica as a stabilizer and azobisisobutyronitrile as an initiator. Concentration of stabilizer was varied from 0.67 to 2.55 weight% with respect to the water, and that of initiator was varied from 0.25 to 3.00 weight% with respect to the butyl methacrylate (BMA) monomer. All polymerization reactions were conducted at 75$^{\circ}C$. It is found that stabilizer concentration has no impact on reaction kinetics, while an increase in initiator concentration enhances polymerization reaction rate. Increase of carbon black concentration from 1 to 3 to 5 wt% into PBMA displayed progressive decrease in reaction conversion. The particle diameter of PBMA composite particles containing carbon black was found to be between 5 and 30 ${\mu}m$. Glass transition was determined to range from 23.8 to 24.7$^{\circ}C$, irrespective of variation in the concentration of stabilizer, initiator or carbon black.

Photopolymerization Kinetics of Urethane-acrylate Oligomer (우레탄-아크릴레이트 올리고머의 광경화 거동)

  • Kim, In-Beom;Song, Bong Jin;Lee, Myung Cheon
    • Applied Chemistry for Engineering
    • /
    • v.17 no.1
    • /
    • pp.33-36
    • /
    • 2006
  • The kinetics of photopolymerization of urethane-acrylate oligomer which has many applications in photopolymerizable adhesives was analysed to investigate the influence of polymerization temperature and functionality of oligomer using the autocatalytic model. It was revealed that the maximum polymerization rate decreased as the polymerization temperature increased. The reaction rate constant, k, showed little change with the increase in polymerization temperature, while exponents m and n exhibited an increase. These results could be related to the diffusion and mobility restriction of reactive species during the cross-linking reaction. The decrease in photopolymerization rate with increase of temperature was mainly controlled by the reaction order n.

A study on the polymerization of energetic prepolymer(GDNPF) (에너지를 함유한 선 폴리머인 Prepolymer(GDNPF) 제조 공정 연구)

  • Cheun, Young-Gu;Kim, Jin-Seuk
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.8 no.2 s.21
    • /
    • pp.67-76
    • /
    • 2005
  • We synthesized an energetic prepolymer(glycidyl dinitro propyl formal, GDNPF) for plastic-bonded explosive and measured its thermodynamic parameters. Glycidyl dinitro propyl formal(GDNPF) as an energetic monomer was epoxidized from allyl-2,2-dinitro propyl formal which is reacted with dinitro propyl alcohol and excess allyl alcohol, and then energetic polymer of GDNPF was polymerized by cationic ring opening polymerization. Thermodynamic parameters were obtained from the ceiling temperature($T_c$) values of 1 mole monomer at reaction temperature. We varied feed rate of monomer, concentration of initiator and monomer to control molecular weight and polydispersity of prepolymer (GDNPF). The activated monomer polymerization has been executed with precisely controlled feed of GDNPF monomer to reactor in the complex state catalyst generated by $BF_3{\cdot}(C_3H_5)_2$ and 1,4-butanediol in $C_2H_4Cl_2$. Number average molecular weight(Mn), polydispersity(Pd), hydroxy number and glass transition temperature($T_g$) of prepolymer(GDNPF) were $2,500{\sim}3,000,\;1.2{\sim}1,3,\;0.6{\sim}0.8eq/kg\;and\;-20{\sim}-25^{\circ}C$ respectively.

Photo-induced Living Cationic Polymerization of Isobutyl Vinyl Ether in the Presence of Various Combinations of Halides of Diphenyliodonium and Zinc Salts in Methylene Chloride

  • Kwon Soonhon;Chun Hyunjeong;Mah Soukil
    • Fibers and Polymers
    • /
    • v.5 no.4
    • /
    • pp.253-258
    • /
    • 2004
  • Living nature of photoinduced cationic polymerization of isobutyl vinyl ether (IBVE) in the presence of various combinations of diphenyliodonium halide (DPIX), a photocationic initiator and zinc halide $(ZnX_2)$ in methylene chloride has been investigated. Attainment of $100\%$ conversion and a linear relationship between $\%$conversion and number average molar mass of the resulting polymer, strongly suggests the living nature of this system. Livingness of the polymerization system was observed irrespective to the type of halide anion of the initiator and zinc salts unless the reaction temperature is not higher than $-30^{\circ}C$. The rate of polymerization decreases in the order of iodide > bromide > chloride when halide salt of DPIX and $ZnX_2$ are used. It is postulated that the cationic initiation is started by the insertion of weakly basic monomer in to the activated C-X terminal of the monomer adduct which is a reaction product of monomer and HX, a photolytic product of DPIX, formed in situ during the photo-irradiation process. It was concluded that polymerization is initiated by the insertion of weakly basic monomer into activated C- X terminal of monomer adduct due to the pulling action of$ZnX_2$, which successively producing a new polarized C-X terminal for the propagation in cationic nature. This led us to a conclusion that the living nature of this cationic polymerization is ascribable to the polarized C-X growing terminal, which is stable enough to depress the processes of chain transfer or termination process.