• 제목/요약/키워드: polymerization rate

검색결과 362건 처리시간 0.032초

DRG2 Deficiency Causes Impaired Microtubule Dynamics in HeLa Cells

  • Dang, Thao;Jang, Soo Hwa;Back, Sung Hoon;Park, Jeong Woo;Han, In-Seob
    • Molecules and Cells
    • /
    • 제41권12호
    • /
    • pp.1045-1051
    • /
    • 2018
  • The developmentally regulated GTP binding protein 2 (DRG2) is involved in the control of cell growth and differentiation. Here, we demonstrate that DRG2 regulates microtubule dynamics in HeLa cells. Analysis of live imaging of the plus-ends of microtubules with EB1-EGFP showed that DRG2 deficiency (shDRG2) significantly reduced the growth rate of HeLa cells. Depletion of DRG2 increased 'slow and long-lived' subpopulations, but decreased 'fast and short-lived' subpopulations of microtubules. Microtubule polymerization inhibitor exhibited a reduced response in shDRG2 cells. Using immunoprecipitation, we show that DRG2 interacts with tau, which regulates microtubule polymerization. Collectively, these data demonstrate that DRG2 may aid in affecting microtubule dynamics in HeLa cells.

Mucoadhesive Drug Carrier Using Poly(acrylic acid)/poly(vinyl alcohol) Interpolymer Complexes by Template Polymerization

  • Oh, Jung-Min;Cho, Chong-Su;Chun, Myung-Kwan;Choi, Hoo-Kyun
    • 대한약학회:학술대회논문집
    • /
    • 대한약학회 2002년도 Proceedings of the Convention of the Pharmaceutical Society of Korea Vol.2
    • /
    • pp.408.1-408.1
    • /
    • 2002
  • A interpolymer complexes composed of poly(acrylic acid)(PAA) and po!y(vinyl alcohol)(PVA) were prepared by template polymerization of acrylic acid in the presence of PVA for mucoadhesive drug delivery. FT -IR results showed that the PAA/PVA interpolymer complex was formed by hydrogen bonding between the carboxyl groups of PAA and the hydroxyl group of PVA. The dissolution rate or the swelling ratio of the PAA/PVA interpolymer complexes was dependent on the pH and molecular weight of PVA that was used as a template. (omitted)

  • PDF

중합조건에 따른 dual cured resin cement의 열분석적 연구 (THERMAL ANALYSIS OF THE DUAL CURED RESIN CEMENTS ACCORDING TO CURING CONDITION)

  • 이인복;정관희;엄정문
    • Restorative Dentistry and Endodontics
    • /
    • 제24권2호
    • /
    • pp.265-285
    • /
    • 1999
  • The purposes of this investigation were to observe the reaction kinetics of five commercial dual cured resin cements (Bistite, Dual, Scotchbond, Duolink and Duo) when cured under varying thicknesses of porcelain inlays by chemical or light activation and to evaluate the effect of the porcelain disc on the rate of polymerization of dual cured resin cement during light exposure by using thermal analysis. Thermogravimetric analysis(TGA) was used to evaluate the weight change as a function of temperature during a thermal program from $25{\sim}800^{\circ}C$ at rate of $10^{\circ}C$/min and to measure inorganic filler weight %. Differential scanning calorimetry(DSC) was used to evaluate the heat of cure(${\Delta}H$), maximum rate of heat output and peak heat flow time in dual cured resin cement systems when the polymerization reaction occured by chemical cure only or by light exposure through 0mm, 1mm, 2mm and 4mm thickness of porcelain discs. In 4mm thickness of porcelain disc, the exposure time was varied from 40s to 60s to investigate the effect of the exposure time on polymerization reaction. To investigate the effect on the setting of dual cured resin cements of absorption of polymerizing light by porcelain materials used as inlays and onlays, the change of the intensity of the light attenuated by 1mm, 2mm and 4mm thickness of porcelain discs was measured using curing radiometer. The results were as follows 1. The heat of cure of resin cements was 34~60J/gm and significant differences were observed between brands (P<0.001). Inverse relationship was present between the heat of reaction and filler weight % the heat of cure decreased with increasing filler content (R=-0.967). The heat of reaction by light cure was greater than by chemical cure in Bistite, Scotchbond and Duolink(P<0.05), but there was no statistically significant difference in Dual and Duo(P>0.05). 2. The polymerization rate of chemical cure and light cure of five commercially available dual cured resin cements was found to vary greatly with brand. Setting time based on peak heat flow time was shortest in Duo during chemical cure, and shortest in Dual during light cure. Cure speed by light exposure was 5~20 times faster than by chemical cure in dual cured resin cements. The dual cured resin cements differed markedly in the ratio of light and chemical activated catalysts. 3. The peak heat flow time increased by 1.51, 1.87, and 3.24 times as light cure was done through 1mm, 2mm and 4mm thick porcelain discs. Exposure times recommended by the manufacturers were insufficient to compensate for the attenuation of light by the 4mm thick porcelain disc. 4. A strong inverse relationship was observed between peak heat flow and peak time in chemical cure(R=0.951), and a strong positive correlations hip was observed between peak heat flow and the heat of cure in light cure(R=0.928). There was no correlationship present between filler weight % or heat of cure and peak time. 5. The thermal decomposition of resin cements occured primarily between $300^{\circ}C$ and $480^{\circ}C$ with maximum decomposition rates at $335^{\circ}C$ and $440^{\circ}C$.

  • PDF

Studies on the Polycondensation Rate of Poly(ethylene 2,6-naphthalate). 2. Polycondensation by Antimony Catalysts

  • 박상순;임승순
    • Bulletin of the Korean Chemical Society
    • /
    • 제16권11호
    • /
    • pp.1099-1104
    • /
    • 1995
  • The catalyzed polycondensations of bis(2-hydroxyethyl) naphthalate were kinetically investigated in the presence of various antimony compounds as a catalyst. The polymerization were investigated with various ligand types of antimony oxides, various concentrations of antimony triacetate and titanium/antimony mixed catalysts. The time to reach the maximum molecular weight was remarkably changed in each case. With increasing the concentration of antimony acetate, the propagation rate was largely increased, while the degradation rate was slightly decreased. It also can be seen that the propagation and degradation rate were larger influenced by the equimolecular titanium/antimony mixed catalyst than other mixed catalysts. The temperature dependence of bis(2-hydroxyethyl) naphthalate with antimony triacetate also has been studied. From the results, it was found that the propagation rate was less influenced by a temperature change than the degradation rate.

Raman Spectroscopy of Irradiated Normoxic Polymethacrylic Acid Gel Dosimeter

  • Bong, Ji-Hye;Choi, Kyu-Seok;Yu, Soo-Chang;Kwon, Soo-Il;Cho, Yu-Ra;Park, Chae-Hee;Park, Hyung-Wook
    • Bulletin of the Korean Chemical Society
    • /
    • 제32권2호
    • /
    • pp.625-629
    • /
    • 2011
  • A quantitative analysis of the decreasing rate of the monomer and increasing rate of the polymerization was made by monitoring radiation level increments using Raman spectroscopy within the therapeutic radiation range for a normoxic polymethacrylic acid gel dosimeter. The gel dosimeter was synthesized by stirring materials such as gelatin, distilled water, methacrylic acid, hydroquinone and tetrakis phosphonium chloride at $50^{\circ}C$, and the synthesized gel was contained in a 10- mm diameter and 32-mm high vial to conduct measurement. 24 hours after gel synthesis, it was irradiated from 0 Gy to 20 Gy by 2 Gy using a Co-60 radiotherapy unit. With use of the Cryo FE-SEM, structural changes in the 0 Gy and 10 Gy gel dosimeters were investigated. The Raman spectra were acquired using 532-nm laser as the excitation source. In accordance with fitting the changes in C-COOH stretching (801 $cm^{-1}$), C=C stretching (1639 $cm^{-1}$) and vinyl $CH_2$ stretching (3114 $cm^{-1}$) vibrational modes for monomer and $CH_2$ bending vibrational mode (1451 $cm^{-1}$) for polymer, sensitive parameter S for each mode was calculated. The values of S for monomer bands and polymer band were ranged in $6.0{\pm}2.6$ Gy and $7.2{\pm}2.3$ Gy, respectively, which shows a relatively good conformity of the decreasing rate of monomer and the increasing rate of polymerization within the range of error.

Role of $N_2$ flow rate on etch characteristics and variation of line edge roughness during etching of silicon nitride with extreme ultra-violet resist pattern in dual-frequency $CH_2F_2/N_2$/Ar capacitively coupled plasmas

  • 권봉수;정창룡;이내응;이성권
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2009년도 제38회 동계학술대회 초록집
    • /
    • pp.458-458
    • /
    • 2010
  • The process window for the etch selectivity of silicon nitride ($Si_3N_4$) layers to extreme ultra-violet (EUV) resist and variation of line edge roughness (LER) of EUV resist were investigated durin getching of $Si_3N_4$/EUV resist structure in a dual-frequency superimposed capacitive coupled plasma (DFS-CCP) etcher by varying the process parameters, such as the $CH_2F_2$ and $N_2$ gas flow rate in $CH_2F_2/N_2$/Ar plasma. The $CH_2F_2$ and $N_2$ flow rate was found to play a critical role in determining the process window for infinite etch selectivity of $Si_3N_4$/EUV resist, due to disproportionate changes in the degree of polymerization on $Si_3N_4$ and EUV resist surfaces. The preferential chemical reaction between hydrogen and carbon in the hydrofluorocarbon ($CH_xF_y$) polymer layer and the nitrogen and oxygen on the $Si_3N_4$, presumably leading to the formation of HCN, CO, and $CO_2$ etch by-products, results in a smaller steady-state hydrofluorocarbon thickness on $Si_3N_4$ and, in turn, in continuous $Si_3N_4$ etching due to enhanced $SiF_4$ formation, while the $CH_xF_y$ layer is deposited on the EUV resist surface. Also critical dimension (and line edge roughness) tend to decrease with increasing $N_2$ flow rate due to decreased degree of polymerization.

  • PDF

여러 가지 모노머와 첨가제를 가지고 전기환원법에 의해 제조된 폴리실란의 반응속도 (The reaction rate of polysilanes prepared by electroreduction with different monomers and additives)

  • 장봉군;진명량;오원춘
    • 분석과학
    • /
    • 제21권5호
    • /
    • pp.432-437
    • /
    • 2008
  • 본 연구에서 초음파 조사하에서 Mg 전극을 사용하여 $CH_3HSiCl_2$, $PhSiCl_3$, $CH_3SiCl_3$$(CH_3)_2SiCl_2$와 같은 여러 가지 모노머를 가지고 전기환원법에 의하여 폴리실란을 합성하였다. 또한 반응속도에 있어서 모노머와 첨가제 (p-dibromobenzene (DBB), naphthalene (NAPH) 및 anthracene (ANTH))의 효과를 연구하였다. 네 종류의 모노머중에서 $PhSiCl_3$의 고분자화 반응은 아주 높은 반응속도를 보였다. 또한, p-dibromobenzene(DBB)는 가장 좋은 첨가제로 입증되었다. 이들 관찰에 근거하여 이들의 고분자화 반응에서 가능한 반응 메커니즘을 제시하였다.

STRAIN AND TEMPERATURE CHANGES DURING THE POLYMERIZATION OF AUTOPOLYMERIZING ACRYLIC RESINS

  • Ahn Hyung-Jun;Kim Chang-Whe;Kim Yung-Soo
    • 대한치과보철학회지
    • /
    • 제39권6호
    • /
    • pp.709-734
    • /
    • 2001
  • The aims of this experiment were to investigate the strain and temperature changes simultaneously within autopolymerzing acrylic resin specimens. A computerized data acquisition system with an electrical resistance strain gauge and a thermocouple was used over time periods up to 180 minutes. The overall strain kinetics, the effects of stress relaxation and additional heat supply during the polymerization were evaluated. Stone mold replicas with an inner butt-joint rectangular cavity ($40.0{\times}25.0mm$, 5.0mm in depth) were duplicated from a brass master mold. A strain gauge (AE-11-S50N-120-EC, CAS Inc., Korea) and a thermocouple were installed within the cavity, which had been connected to a personal computer and a precision signal conditioning amplifier (DA1600 Dynamic Strain Amplifier, CAS Inc., Korea) so that real-time recordings of both polymerization-induced strain and temperature changes were performed. After each of fresh resin mixture was poured into the mold replica, data recording was done up to 180 minutes with three-second interval. Each of two poly(methyl methacrylate) products (Duralay, Vertex) and a vinyl ethyl methacrylate product (Snap) was examined repeatedly ten times. Additionally, removal procedures were done after 15, 30 and 60 minutes from the start of mixing to evaluate the effect of stress relaxation after deflasking. Six specimens for each of nine conditions were examined. After removal from the mold, the specimen continued bench-curing up to 180 minutes. Using a waterbath (Hanau Junior Curing Unit, Model No.76-0, Teledyne Hanau, New York, U.S.A.) with its temperature control maintained at $50^{\circ}C$, heat-soaking procedures with two different durations (15 and 45 minutes) were done to evaluate the effect of additional heat supply on the strain and temperature changes within the specimen during the polymerization. Five specimens for each of six conditions were examined. Within the parameters of this study the following results were drawn: 1. The mean shrinkage strains reached $-3095{\mu}{\epsilon},\;-1796{\mu}{\epsilon}$ and $-2959{\mu}{\epsilon}$ for Duralay, Snap and Vertex, respectively. The mean maximum temperature rise reached $56.7^{\circ}C,\;41.3^{\circ}C$ and $56.1^{\circ}C$ for Duralay, Snap, and Vertex, respectively. A vinyl ethyl methacrylate product (Snap) showed significantly less polymerization shrinkage strain (p<0.01) and significantly lower maximum temperature rise (p<0.01) than the other two poly(methyl methacrylate) products (Duralay, Vertex). 2. Mean maximum shrinkage rate for each resin was calculated to $-31.8{\mu}{\epsilon}/sec,\;-15.9{\mu}{\epsilon}/sec$ and $-31.8{\mu}{\epsilon}/sec$ for Duralay, Snap and Vertex, respectively. Snap showed significantly lower maximum shrinkage rate than Duralay and Vertex (p<0.01). 3. From the second experiment, some expansion was observed immediately after removal of specimen from the mold, and the amount of expansion increased as the removal time was delayed. For each removal time, Snap showed significantly less strain changes than the other two poly(methyl methacrylate) products (p<0.05). 4. During the external heat supply for the resins, higher maximum temperature rises were found. Meanwhile, the maximum shrinkage rates were not different from those of room temperature polymerizations. 5. From the third experiment, the external heat supply for the resins during polymerization could temporarily decrease or even reverse shrinkage strains of each material. But, shrinkage re-occurred in the linear nature after completion of heat supply. 6. Linear thermal expansion coefficients obtained from the end of heat supply continuing for an additional 5 minutes, showed that Snap exhibited significantly lower values than the other two poly(methyl methacrylate) products (p<0.01). Moreover, little difference was found between the mean linear thermal expansion coefficients obtained from two different heating durations (p>0.05).

  • PDF

메탈로센 촉매를 이용한 신디오탁틱 폴리스타이렌의 벌크 중합에 관한 연구 (Multiple Injection Method for Bulk Syndiospecific Polymerization of Styrene with Homogeneous Metallocene Catalyst)

  • 임진형;손영곤
    • 한국산학기술학회논문지
    • /
    • 제11권4호
    • /
    • pp.1348-1353
    • /
    • 2010
  • 신디오탁틱 폴리스타이렌의 벌크 중합 시, 반응의 초기단계에서 균일하던 반응혼합물은 반응이 진행됨에 따라 점차 침전된 고형 sPS와 액체 반응생성물로 형성된 슬러리 상태로 변해간다. 반응이 더 진행되면 고형 침전물의 양이 많아지고 반응물이 엉겨 붙는 현상을 적절한 방법으로 해소하면 슬러리 상태에서 젖은 분말 형태 더 나가서는 마른 분말 형태의 반응 생성물을 얻게 된다. 전화율을 높이기 위해 촉매와 조촉매의 양을 늘리는 경우 반응성생물은 어느 순간 한 덩어리가 되어 더 이상의 반응 제어가 불가능해진다. 이 연구에서는 이렇게 덩어리로 응집되는 현상을 막고 고 전화율의 반응이 가능하도록 특별한 방법을 사용하였다. 촉매와 조촉매를 한 번에 투입하지 않고 여러 단계로 나누어 투입하는 경우 반응물의 응집을 막고 전화율을 높게 유지할 수 있었다. 또한 이 방법은 sPS의 분자량을 높이는데도 도움이 되는 것을 알 수 있었다.

수분산성 아크릴계 점착제 중합 조건에 관한 연구 (Study on Polymerization Condition of Water-based Acrylic Adhesion)

  • 이행자;장석희;장상목;김종민
    • Korean Chemical Engineering Research
    • /
    • 제48권5호
    • /
    • pp.609-614
    • /
    • 2010
  • 본 연구는 주단량체로 2-에틸헥실아크릴레이트(2-EHA), n-부틸아크릴레이트(n-BA), 메틸메타크릴레이트(MMA) 그리고 기능성 단량체로 아크릴산(AAc)을 사용한 유화중합에서 아크릴계 점착제를 합성하기 위한 최적의 합성 조건을 구하고자 한다. 이를 위하여 계면활성제 농도의 영향, 계면활성제 Hydrophilic lipophilic Balance(HLB) 값, 중합개시제의 농도와 완충제가 아크릴계 점착제의 물성에 미치는 영향을 연구하였다. 그 결과 계면활성제는 단량체 사용량에 대하여 3~5 wt%를 사용하였을 때, HLB 값이 12.3일 때 가장 안정한 점착체를 얻을 수 있었으며, 중합 개시제의 농도가 1 wt% 이상 사용하였을 때는 중합 속도는 증가하였으나 안정성이 저하되었다. 완충제로 sodium bicarbonate를 사용할 경우 0.4 wt% 이상 사용하여야 충분한 완충 효과가 있었으며, 단량체의 종류에 따라 약간의 차이는 있으나 완충제의 농도가 0.6~0.8 wt%가 적당하여 4성분계 유화중합에서 최적의 중합 조건을 제시할 수 있었다.