• Title/Summary/Keyword: polymerization phase

Search Result 267, Processing Time 0.031 seconds

Preparation of Conductive PEDOT-PSMA Hybrid Thin Films Using Simultaneous Co-vaporized Vapor Phase Polymerization (동시-공증발 기상 중합을 이용한 전도성 PEDOT-PSMA 박막 제조)

  • Nodora, Kerguelen Mae;Yim, Jin-Heong
    • Applied Chemistry for Engineering
    • /
    • v.29 no.3
    • /
    • pp.330-335
    • /
    • 2018
  • A new approach for the fabrication of organic-organic conducting composite thin films using simultaneous co-vaporization vapor phase polymerization (SC-VPP) of two or more monomers that have different polymerization mechanisms (i.e., oxidation-coupling polymerization and radical polymerization) was reported for the first time. In this study, a PEDOT-PSMA composite thin film consisting of poly(3,4-ethylenedioxythiophene)(PEDOT) and poly(styrene-co-maleic anhydride)(PSMA) was prepared by SC-VPP process. The preparation of organic-organic conductive composite thin films was confirmed through FT-IR and $^1H-NMR$ analyses. The surface morphology analysis showed that the surface of PEDOT-PSMA thin film was rougher than that of PEDOT thin film. Therefore, PEDOT-PSMA exhibited lower electrical conductivity than that of PEDOT. But the conductivity can be improved by adding 2-ethyl-4-methyl imidazole as a weak base. The contact angle of PEDOT-PSMA was about $50^{\circ}$, as compared to $62^{\circ}$ for PEDOT. The demonstrated methodology for preparing an organic-organic conductive hybrid thin film is expected to be useful for adjusting intrinsic conductive polymer (ICP)'s surface properties such as mechanical, optical, and roughness properties.

Adsorption Behavior of PAHs in Cigarette Smoke on Glass Beads - Effect of Plasma Polymerization Coating (담배 연기 내 PAH의 유리입자에 대한 흡착거동 - 플라즈마 고분자 중합 코팅 영향)

  • Basarir, Fevzihan;Rhee, Moon-Soo;Lee, Young-Taek;Yoon, Tae-Ho
    • Journal of Adhesion and Interface
    • /
    • v.11 no.4
    • /
    • pp.137-143
    • /
    • 2010
  • Glass beads (GBs) were modified via plasma polymerization coatings in order to enhance the adsorption of polycyclic aromatic hydrocarbons (PAHs) in cigarette smoke and activated carbons (ACs) were also utilized for comparative purposes. First, GBs and ACs were subjected to surface modification via plasma polymerization coating of acrylic acid, acrylonitrile, 1,3-diaminopropane, thiophene or dimethylphosphite with a RF plasma (13.56 MHz) generator. Next, their adsorption behavior was evaluated with a home-made 4-port smoking machine by collecting the total particulate matters (TPMs) on a Cambridge filter pad, followed by the separation of PAHs via solid phase extraction and analysis with GC/MS. Finally, the plasma polymerization coatings were analyzed by FT-IR/ATR to elucidate the adsorption mechanism, while the topology of the modified GBs and ACs were studied by FE-SEM.

Preparation of Poly(vinyl acetate)/Clay and Poly(vinyl acetate)/ Poly(vinyl alcohol)/Clay Microspheres

  • Jung Hye-Min;Lee Eun-Mi;Ji Byung-Chul;Sohn Sung-Ok;Ghim Han-Do;Cho Hyun-Ju;Han Young-A;Choi Jin-Hyun;Yun Jae-Deuk;Yeum Jeong-Hyun
    • Fibers and Polymers
    • /
    • v.7 no.3
    • /
    • pp.229-234
    • /
    • 2006
  • Poly(vinyl acetate) (PVAc)/poly(vinyl alcohol) (PVA)/montmorillonite (MMT) clay nanocomposite microspheres with a core/shell structure have been developed via a suspension polymerization approach. In order to prepare the PVAc/ MMT and PVAc/PVA/MMT nanocomposite microspheres, which are promising precursor of PVA/MMT nanocomposite microspheres, suspension polymerization of vinyl acetate with organophilic MMT and heterogeneous saponification were conducted. A quaternary ammonium salt, cetyltrimethylammonium bromide, was mixed with the MMT in the monomer phase prior to the suspension polymerization. The rate of conversion decreased with an increase in MMT concentration. The incorporation of MMT into the PVAc was verified by FT-IR spectroscopy. Organic vinyl acetate monomers were intercalated into the interlayer regions of organophilic clay hosts and followed by suspension polymerization. Partially saponified PVA/MMT nanocomposite microspheres with a core/shell structure were successfully prepared by heterogeneous saponification.

Effect of Poly(butyl acrylate)-Poly(methyl methacrylate) Rubber Particle Texture on the Toughening Behavior of Poly(methyl methacrylate)

  • Chung, Jae-Sik;Park, Kyung-Ran;Wu, Jong-Pyo;Han, Chang-Sun;Lee, Chan-Hong
    • Macromolecular Research
    • /
    • v.9 no.2
    • /
    • pp.122-128
    • /
    • 2001
  • Monodisperse composite latex particles with size of ca. 300 nm, which consist ofn-butyl acrylate as a soft phase and methyl methacrylate as a hard phase with different morphology, were synthesized by seeded multi-stage emulsion polymerization. Three types of composite latex particles including random-, core/shell-, and gradient-type particles were obtained by using different monomer feeding methods during semi-batch emulsion polymerization. Effect of poly(butyl acrylate)-poly(methyl methacrylate) rubber particle morphology on the mechanical and rheological properties of rubber toughened poly(methyl methacrylate) was investigated. Among three different rubber particles, the gradient-type rubber particle showed better toughening effect than others. No significant variation of rheological property of poly(methyl methacrylate)/rubber blends was observed for the different rubber particle morphology.

  • PDF

Modeling and Analysis of a Gas Sweeping Process for Polycarbonate Polymerization

  • Kim, Dae-Hyung;Ha, Kyoung-Su;Rhee, Hyun-Ku;Song, Kwnag-Ho
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.100.3-100
    • /
    • 2001
  • This article deals with the development of a mathematical model for the finishing polycarbonate polymerization process using a horizontal rotating disk-ring reactor with counter-current gas sweeping and the performance analysis of the reactor system by using the model. Here we intend to propose a model describing the reactor system consisting of two phases, in which by-product phenol is removed from the polymer of high molecular weight compatible with the products of commercial grades. The vapor phase is represented by a tanks-ln-series model while the polymer melt phase is regarded as a plug flow reactor.

  • PDF

Single-Crystal Poly(3,4-ethylenedioxythiopene) Nanowires as Electrodes for Field-Effect Transistors

  • Jo, Bo-Ram;Seong, Myeong-Mo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.637-637
    • /
    • 2013
  • We develop single-crystal poly(3,4-ethylenedioxythiopene nanowires using liquid-bridge-mediated nanotransfer printing via vapor phase polymerization. This direct printing method can simultaneously enable the synthesis, alignment and patterning of the nanowires from molecular ink solutions. Twoor three-dimensional complex structures of various single-crystal organic nanowires were directly fabricated over a large area using many types of molecular inks. This method is capable of generating several optoelectronic devices. LB-nTM is based on the direct transfer of various materials from a mold to a substrate via a liquid bridge between them. To demonstrate its usefulness, we used LB-nTM to fabricate nanowire field-effect transistors and arrays of 6,13-bis (triisopropyl- silylethynyl) pentacene (TIPS-PEN) nanowire field-effect transistors.

  • PDF

Preparation of Nanocapsules Containing Phase Change Materials by Miniemulsion Polymerization

  • Oh, Keun Jin;Kim, Dae-Su;Lee, Jae Heung;Choi, Kil-Yeong;Lee, Changjin
    • Journal of Adhesion and Interface
    • /
    • v.4 no.1
    • /
    • pp.35-42
    • /
    • 2003
  • Polystyrene nanocapsules containing octadecane as a core material were prepared by miniemulsion polymerization. The morphology and size of the nanocapsules were measured with varying the surfactant concentration, content of initiator, core/shell ratio and content of comonomer. The morphologies of the prepared nanoparticles were examined by a scanning electron microscope, a transmission electron microscope and the core material was confirmed by a differential scanning calorimeter. The particles below 70 nm in diameter were formed at a high surfactant concentration. The size of the nanoparticles was not significantly affected by the initiator content. With increasing the core/shell ratio and polar comonomer content, the particle size and its distribution were increased.

  • PDF