• Title/Summary/Keyword: polymerization condition

Search Result 152, Processing Time 0.023 seconds

A Fatigue Toughness and Polymerization Shrinkage of Post-cure Heat Treated Composite Resins (광중합 복합레진에 대한 가열처리 피로내성 및 중합수축에 미치는 영향)

  • Oh, Won-Mann;Rhu, Sun-Youl;Son, Ho-Hyun;Okuda, Reiichi;Endo, Tastuo;Kudo, Yoshiyuki
    • Restorative Dentistry and Endodontics
    • /
    • v.19 no.1
    • /
    • pp.135-147
    • /
    • 1994
  • This study was conducted to evaluate whether the fatigue toughness of visible light cured composite resins could be improved and how much percentage of polymerzation shrinkage could be affected by additional heat treatment. 7 materials were investigated for this study: P-50, Lite-fil CR inlay, Pekafil, Clearfil CR inlay, Clearfil photo posterior, Z -100 and Progress. Diametral tensile strengths and linear shrinkages of composite resins were taken under visible light cured and additional post-cure heated condition and compared each other. A fatigue toughness of above materials was evaluated by measuring diametral tensile strength after they were repeatedly loaded with 120kgf/$cm^2$ up to 3000 cycles. The results obtained were as follows : 1. When composite resins were cured just by visible light, Lite fil CR inlay, Z -100 and Progress showed respectively higher diametral tensile strength than the other materials. Clearfil CR inlay, Clearfil photo posterior and Progress exhibited strong fatigue toughness compared to P-50 and Pekafil. 2. Post-cure heat treated composite resins had higher diametral tensile strengths than visible light cured composite resins at fatigue toughness test as well as no fatigue toughness test. 3. When Composite resins were additionally polymerized by post-cure heat treatment, P-50 showed weak fatigue toughness, on the contrary, Clearfil CR inlay, Z-100, Progress showed strong one. 4. When composite resins were cured just by visible light, percentage of polymerization linear shrinkage was the lowerest in Clearfil CR inlay, followed by, in ascending order, Clearfil photo posterior, Lite-fil CR inlay, Progress, Pekafil, P-50, and Z-100. In the case of post- cure heat treated composite resins, percentage of linear shrinkage was the lowest in Clearfil photo posterior, followed by, in ascending order, Lite-til CR inlay, Clearfil CR inlay, Progress, P-50, Pekafil and Z-100. 5. Percentage of polymerization linear shrinkage was greater in the post-cure heat treated composite resins than in the visible light cured composite resins and linear shrinkage increased significantly in Pekafil, Clearfil CR inlay, and Clearfil photo posterior between at the visible light cured and at the post-cure heat treated condition. The above results is saying that additional post-cure heat treatment on the composite resins for posterior restoration is able to affect on improvement of strength and fatigue toughness and lead to increase polymerization of composite resins.

  • PDF

Errors in light-emitting diodes positioning when curing bulk fill and incremental composites: impact on properties after aging

  • Abdulrahman A. Balhaddad;Isadora M. Garcia;Haifa Maktabi;Maria Salem Ibrahim;Qoot Alkhubaizi;Howard Strassler;Fabricio M. Collares;Mary Anne S. Melo
    • Restorative Dentistry and Endodontics
    • /
    • v.46 no.4
    • /
    • pp.51.1-51.13
    • /
    • 2021
  • Objectives: This study aimed to evaluate the effect of improper positioning single-peak and multi-peak lights on color change, microhardness of bottom and top, and surface topography of bulk fill and incremental composites after artificial aging for 1 year. Materials and Methods: Bulk fill and incremental composites were cured using multi-peak and single-peak light-emitting diode (LED) following 4 clinical conditions: (1) optimal condition (no angulation or tip displacement), (2) tip-displacement (2 mm), (3) slight tip angulation (α = 20°) and (4) moderate tip angulation (α = 35°). After 1-year of water aging, the specimens were analyzed for color changes (ΔE), Vickers hardness, surface topography (Ra, Rt, and Rv), and scanning electron microscopy. Results: For samples cured by single-peak LED, the improper positioning significantly increases the color change compared to the optimal position regardless of the type of composite (p < 0.001). For multi-peak LED, the type of resin composite and the curing condition displayed a significant effect on ΔE (p < 0.001). For both LEDs, the Vickers hardness and bottom/top ratio of Vickers hardness were affected by the type of composite and the curing condition (p < 0.01). Conclusions: The bulk fill composite presented greater resistance to wear, higher color stability, and better microhardness than the incremental composite when subjected to improper curing. The multi-peak LED improves curing under improper conditions compared to single-peak LED. Prevention of errors when curing composites requires the attention of all personnel involved in the patient's care once the clinical relevance of the appropriate polymerization reflects on reliable long-term outcomes.

A Study on the Variance of Properties of Thin Film Composite Membrane according to change of International Polymerization Condition (계면중합조건에 따른 복합막의 물성 변화에 관한 연구)

  • 이동진;최영국;이수복;민병렬
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1998.04a
    • /
    • pp.17-20
    • /
    • 1998
  • 1. 서론 : 계면중합은 제조에 따른 박막의 성능 조절이 가능한 이유로 해서 역삼투용 복합막의 주요 제조 방법으로 제시되어 왔다. 계면중합을 응용하여 제조된 복합막의 성능은 반응 단량체의 종류, 용재의 종류, 단량체의 농도, 반응시간, 열처리 유무 및 온도와 시간 등에 의해 변한다. 한편 위의 변수에 절대적인 영향을 받고 아울러 단량체간의 몰 비가 성립하지 않음으로 해서 최적의 막 성능으로 제시되는 조건을 만족하기 위하여 주로 시행착오에 의한 방법을 동원하여 여러 변수에 다른 제조 막의 성능 고찰을 실시하여 왔다. (생략)

  • PDF

Effects of Polymerization and Spinning Conditions on Mechanical Properties of PAN Precursor Fibers

  • Qin, Qi-Feng;Dai, Yong-Qiang;Yi, Kai;Zhang, Li;Ryu, Seung-Kon;Jin, Ri-Guang
    • Carbon letters
    • /
    • v.11 no.3
    • /
    • pp.176-183
    • /
    • 2010
  • PAN precursor fibers were produced via wet-spinning process, and effects of polymerization and spinning processes, especially the stretching process, were investigated on mechanical properties and micro-morphologies of precursor fibers. An increase in molecular weight, dope solid and densification and a decrease in surface defects were possible by controlling polymerization temperature, the number of heating rollers for densification and the jet stretch ratio, which improved the mechanical properties of precursor fibers. The curves for strength, modulus, tensile power and diameter as a function of stretch ratio can be divided into three stages: steady change area, little change area and sudden change area. With the increase of stretch ratio, the fiber diameter became smaller, the degree of crystallization increased and the structure of precursor fibers became compact and homogeneous, which resulted in the increase of strength, modulus and tensile power of precursor fibers. Empirical relationship between fiber strength and stretch ratio was studied by using the sub-cluster statistical theory. It was successfully predicted when the strengths were 0.8 GPa and 1.0 GPa under a certain technical condition, the corresponding stretch ratio of the fiber were 11.16 and 12.83 respectively.

Improvement in Inorganic Affinity of Acrylic Materials for Conservation Treatment of Stone Cultural Assets (석조문화재를 위한 아크릴계 보존처리제의 무기친화성 개선)

  • Kim, Youn-Cheol;Kim, Un-Young;Kim, Hyung-Joong
    • Polymer(Korea)
    • /
    • v.34 no.1
    • /
    • pp.14-19
    • /
    • 2010
  • Applying acrylic silane monomer for determent of weathering damage of stone cultural assets from various sources was investigated to improve inorganic affinity of polymer impregnated to the stone for conservation treatment using impregnation of acrylic polymers under pressure. Radical polymerization was carried out with various mixture ratios of methacrylate (MMA), as the base monomer, and vinyl trimethoxy silane (VTMS). Subsequently, according to the changes of glass transition temperatures, average molecular weights, and storage moduli of the obtained copolymers, the case of adding 1 wt% of benzoyl peroxide, polymerization for 8 hrs, and mixing 5 mol% of VTMS to MMA was the optimum condition of monomer ratio and polymerization. Practically, fresh granites collected in domestic site and weathered stones were treated by following the obtained result above, and then, the moisture absorption, impact, acid resistance, and adhesion properties of the treated stones were compared to those of the corresponding stones treated with MMA only. It was found that those properties of the stones treated with PMV5 were considerably improved.

Study of Emulsion Polymerization Condition of Aqueous Adhesive (유화중합을 이용한 수분산성접착제의 중합조건에 관한 연구)

  • Lee, HaengJa;Park, JiSun;Lee, SangRok;Kim, JongMin;Chang, SangMok
    • Korean Chemical Engineering Research
    • /
    • v.47 no.4
    • /
    • pp.470-475
    • /
    • 2009
  • To study the optimal synthesis conditions of aqueous acrylic adhesive using emulsion polymerization, the effects of monomer, surfactant and initiator on the adhesive properties, such as conversion rate, particle size, peel strength, and glass transition temperature, were investigated. 2-EHA, n-BA and MMA were used as main monomers, 2-HEMA and AAc as functional monomers, SLS as surfactant and APS as initiator, respectively. The conversion rate was over 95% at 3.75% surfactant(SLS/monomer), 0.612% initiator(APS/monomer) and $82^{\circ}C$ reaction temperature. When the excess amount of surfactant or initiator was used, the peel strength represented decreasing tendency. The maximum conversion rate and peel strength were obtained at 65% 2-EHA/monomer, 20% BA/monomer, and 10% MMA/monomer.

Mechanical Properties of Denture Base Resin through Controlling of Particle Size and Molecular Weight of PMMA (폴리(메틸 메타아크릴레이트) 입자 크기 및 분자량 제어에 따른 의치상 재료로서의 기계적 물성 변화)

  • 양경모;정동준
    • Polymer(Korea)
    • /
    • v.27 no.5
    • /
    • pp.493-501
    • /
    • 2003
  • Poly(methyl methacrylate) (PMMA) particles, denture base resin, were synthesized by suspension polymerization through control of polymerization conditions (stabilizer concentration, co-monomer concentration, and the agitation speed) and evaluated changes in molecular weight and particle size. We also investigated their mechanical properties of compression-molded samples which were from synthesized polymer powder mixed with methyl methacrylate (MMA) solution. under the condition of volumetric ratio as 2:1(PMMA powder and MMA solution). The results shows that the mechanical properties were mainly affected by particle size over 100 ${\mu}$m (in particle size) and by molecular weight under 100 ${\mu}$m (in particle size). From these results, we concluded that the most appropriate particle size of PMMA powder for heat-cured denture base resins is around 100 ${\mu}$m. and its molecular weight is around 300000 (M$\sub$n/).

Manufacture of the Thin-Film Composite Membranes for the Reverse Osmosis Process using Interfacial Polymerization Technique (계면중합에 의한 역삼투용 복합막 제조에 관한 연구)

  • 박종원;김희진;민병렬
    • Membrane Journal
    • /
    • v.8 no.1
    • /
    • pp.29-41
    • /
    • 1998
  • Thin-film composite reverse osmosis membranes of aromatic polyamides were prepared by the interfacial polymerization. Aromatic polyamides as active skin layer were made from the interfacial polymerization of MPD(m-phenylene diamine) in the aqueous and TMC(trimesoyl chloride) in HCFC(1,1-dichloro-1-fluoroethane) organic solvent. The performances of the various reverse osmosis composite membranes prepared by changing processing variables were examined. The performance of membrane manufactured by batch system was varied with organic solvent, monomer concentration, dipping time, heat treatment temperature, acid acceptor, ethanol post treatment, and acid post treatment. Ethanol post treatment was the most dominant factors in increasing permeate amount, while the monomer concentration and dipping time were the main factors in increasing selectivity. The spiral-wound module was produced with the membrane prepared at optimum condition of the continuous process. Comparing the performance of this membrane module made here with that of commercial membrane module, the permeate flux was increased by 33% while the rejection was decreased by 5%.

  • PDF

Polymerization of L-lactide Using Organometallic Aluminium Compound Supported inside Nanopores of Silica (실리카 나노기공내 담지된 알루미늄계 유기금속화합물을 이용한 L-lactide 중합)

  • Yim, Jin-Heong;Ko, Young Soo
    • Polymer(Korea)
    • /
    • v.37 no.5
    • /
    • pp.600-605
    • /
    • 2013
  • In this study, the bulk polymerizations of L-lactide were carried out with triethylaluminium (TEAL), which was supported inside of the nanopore of silica. The feed amount of TEAL in the feed, the immobilization time and temperature were changed to observe the effect of immobilization condition on the polymerization performance with the silica- supported TEAL. As the feed amount of TEAL increased, the conversion of polymerization increased. The highest molecular weight (MW) was achieved at 8 mmol/g-silica of TEAL. Hexane and toluene as solvents were employed to investigate the effect of temperature on the immobilization. Hexane showed better efficiency of immobilization TEAL and the immobilization temperature at $50^{\circ}C$ showed the highest conversion and MW.

Preparation and Characterization of Nylon 6-Morpholinone Random Copolymers Based on ε-Caprolactam and Morpholinone (바이오 기반 ε-Caprolactam과 Morpholinone을 사용하여 중합한 나일론 6-모폴리논 랜덤 공중합체의 제조와 특성평가)

  • Kim, Hye Young;Ryu, Mi Hee;Kim, Dae Su;Song, Bong-Keun;Jegal, Jonggeon
    • Polymer(Korea)
    • /
    • v.38 no.6
    • /
    • pp.714-719
    • /
    • 2014
  • Bio-based nylon 6-morpholinone random copolymers were prepared by the anionic ring opening polymerization of ${\varepsilon}$-caprolactam and morpholinone, both of which were prepared from lysine and glucose, respectively. From this work, a new biomass based nylon 6 with improved hydrophilicity was prepared. Optimizing the polymerization condition, copolymer with a viscosity-average molecular weight of 30000 g/mol was prepared, with a yield of 80%. It was possible to improve the hydrophilicity of nylon 6 by its copolymerization with morpholinone. The prepared nylon 6-morpholinone random copolymers were then characterized using several analytical methods such as DSC, TGA, XRD, viscosity measurement with U-shaped glass capillary viscometer and contact angle measurement.