Browse > Article
http://dx.doi.org/10.7317/pk.2013.37.5.600

Polymerization of L-lactide Using Organometallic Aluminium Compound Supported inside Nanopores of Silica  

Yim, Jin-Heong (Division of Advanced Materials Engineering, Kongju National University)
Ko, Young Soo (Department of Chemical Engineering, Kongju National University)
Publication Information
Polymer(Korea) / v.37, no.5, 2013 , pp. 600-605 More about this Journal
Abstract
In this study, the bulk polymerizations of L-lactide were carried out with triethylaluminium (TEAL), which was supported inside of the nanopore of silica. The feed amount of TEAL in the feed, the immobilization time and temperature were changed to observe the effect of immobilization condition on the polymerization performance with the silica- supported TEAL. As the feed amount of TEAL increased, the conversion of polymerization increased. The highest molecular weight (MW) was achieved at 8 mmol/g-silica of TEAL. Hexane and toluene as solvents were employed to investigate the effect of temperature on the immobilization. Hexane showed better efficiency of immobilization TEAL and the immobilization temperature at $50^{\circ}C$ showed the highest conversion and MW.
Keywords
polylactide; triethylaluminium; supported catalyst; silica; L-lactide;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 T. Willke and K. D. Vorlop, Appl. Microbiol. Biot., 66, 131 (2004).   DOI   ScienceOn
2 Y. Tokiwa, B. P. Calabia, C. U. Ugwu, and S. Aiba, Int. J. Mol. Sci., 10, 3722 (2009).   DOI   ScienceOn
3 K. M. Nampoothiri, N. R. Nair, and R. P. John, Bioresource Technol., 101, 8493 (2010).   DOI   ScienceOn
4 A. J. R. Lasprilla, G. A. R. Martinez, B. H. Lunelli, A. L. Jardini, and R. M. Filho, Biotechnol. Adv., 30, 321 (2012).   DOI   ScienceOn
5 M. Agarwal, K. W. Koelling, and J. J. Chalmers, Biotechnol. Progr., 14, 517 (1998).   DOI   ScienceOn
6 J. Y. Yoo, D. H. Kim, and Y. S. Ko, Polymer(Korea), 36, 593 (2012).
7 Y. H. Noh and Y. S. Ko, Polymer(Korea), 36, 53 (2012).
8 F. A. Kim, E. W. Shin, I. K. Yoo, and J. S. Chung, J. Mol. Catal. A- Chem., 298, 36 (2009).   DOI   ScienceOn
9 K. B. Aubrecht, M. A. Hillmyer, and W. B. Tolman, Macromolecules, 35, 644 (2002).   DOI   ScienceOn
10 A. J. Chmura, D. M. Cousins, M. G. Davidson, M. D. Jones, M. D. Lunn, and M. F. Mahon, Dalton Trans., 11, 1437 (2008).
11 M. H. Chisholm, J. C. Gallucci, and K. Phomphrai, Inorg. Chem., 44, 8004 (2005).   DOI   ScienceOn
12 M. H. Chisholm, J. C. Gallucci, and K. Phomphrai, Inorg. Chem., 43, 6717 (2004).   DOI   ScienceOn
13 R. Mehta, V. Kumar, H. Bhunia, and S. N. Upadhyay, J. Macromol. Sci. Part C: Polym. Rev., 45, 325 (2005).   DOI   ScienceOn
14 D. Garlotta, J. Polym. Environ., 9, 63 (2001).   DOI   ScienceOn
15 J. Y. Yoo and Y. S. Ko, Polymer(Korea), 36, 693 (2012).
16 E. Kim, E. W. Shin, I. K. Yoo, and J. S. Shung, Macromol. Res., 17, 346 (2009).   DOI   ScienceOn
17 A. Prebe, P. Alcouffe, P. Cassagnau, and J. F. Gerard, Mater. Chem. Phys., 124, 399 (2010).   DOI   ScienceOn
18 J. R. Severn, J. C. Chadwick, R. Duchateau, and N. Friedeichs, Chem. Rev., 105, 4073 (2005).   DOI   ScienceOn
19 C. Miola, T. Hamaide, and R. Spitz, Polymer, 38, 5667 (1997).   DOI   ScienceOn
20 J. Y. Yoo, Y. Kim, and Y. S. Ko, J. Ind. Eng. Chem., 19, 1137 (2012).
21 H. Tsuji, Macromol. Biosci., 5, 569 (2005).   DOI   ScienceOn
22 T. Furnkawa, H. Sato, R. Murakami, J. Zhang, Y. X. Duan, I. Noda, S. Ochiai, and Y. Ozaki, Macromolecules, 38, 6445 (2005).   DOI   ScienceOn