DOI QR코드

DOI QR Code

Polymerization of L-lactide Using Organometallic Aluminium Compound Supported inside Nanopores of Silica

실리카 나노기공내 담지된 알루미늄계 유기금속화합물을 이용한 L-lactide 중합

  • Yim, Jin-Heong (Division of Advanced Materials Engineering, Kongju National University) ;
  • Ko, Young Soo (Department of Chemical Engineering, Kongju National University)
  • Received : 2013.03.19
  • Accepted : 2013.06.12
  • Published : 2013.09.25

Abstract

In this study, the bulk polymerizations of L-lactide were carried out with triethylaluminium (TEAL), which was supported inside of the nanopore of silica. The feed amount of TEAL in the feed, the immobilization time and temperature were changed to observe the effect of immobilization condition on the polymerization performance with the silica- supported TEAL. As the feed amount of TEAL increased, the conversion of polymerization increased. The highest molecular weight (MW) was achieved at 8 mmol/g-silica of TEAL. Hexane and toluene as solvents were employed to investigate the effect of temperature on the immobilization. Hexane showed better efficiency of immobilization TEAL and the immobilization temperature at $50^{\circ}C$ showed the highest conversion and MW.

본 연구에서는 polylactide(PLA) 중합 촉매로 알루미늄계 유기금속화합물인 triethylaluminium(TEAL)을 이용하여 실리카에 담지하고 이를 이용하여 L-lactide 벌크중합을 진행하였다. TEAL을 실리카에 담지하기 위해 촉매 투입량, 담지시간, 담지온도를 변화시켜 촉매를 합성하고 이를 이용하여 생성된 PLA의 중합특성을 확인하였다. 담지된 촉매 투입량이 증가할수록 전환율이 높고 촉매 투입량이 8 mmol/g-silica일 경우에 가장 높은 분자량을 보였다. 담지시간을 변화시켜 합성된 담지촉매를 이용하여 중합한 결과 담지시간이 증가할수록 전환율 및 분자량이 증가하였다. 담지온도를 변화시켜 촉매를 합성하기 위해 용매로 hexane과 toluene을 사용하였다. 담지온도를 변화시켜 합성된 촉매로 L-lactide 중합한 결과, hexane을 용매로 사용하고 담지온도가 $50^{\circ}C$일 경우에 전환율 및 분자량이 높았다.

Keywords

Acknowledgement

Supported by : 한국연구재단

References

  1. T. Willke and K. D. Vorlop, Appl. Microbiol. Biot., 66, 131 (2004). https://doi.org/10.1007/s00253-004-1733-0
  2. Y. Tokiwa, B. P. Calabia, C. U. Ugwu, and S. Aiba, Int. J. Mol. Sci., 10, 3722 (2009). https://doi.org/10.3390/ijms10093722
  3. K. M. Nampoothiri, N. R. Nair, and R. P. John, Bioresource Technol., 101, 8493 (2010). https://doi.org/10.1016/j.biortech.2010.05.092
  4. A. J. R. Lasprilla, G. A. R. Martinez, B. H. Lunelli, A. L. Jardini, and R. M. Filho, Biotechnol. Adv., 30, 321 (2012). https://doi.org/10.1016/j.biotechadv.2011.06.019
  5. M. Agarwal, K. W. Koelling, and J. J. Chalmers, Biotechnol. Progr., 14, 517 (1998). https://doi.org/10.1021/bp980015p
  6. J. Y. Yoo, D. H. Kim, and Y. S. Ko, Polymer(Korea), 36, 593 (2012).
  7. Y. H. Noh and Y. S. Ko, Polymer(Korea), 36, 53 (2012).
  8. F. A. Kim, E. W. Shin, I. K. Yoo, and J. S. Chung, J. Mol. Catal. A- Chem., 298, 36 (2009). https://doi.org/10.1016/j.molcata.2008.09.029
  9. K. B. Aubrecht, M. A. Hillmyer, and W. B. Tolman, Macromolecules, 35, 644 (2002). https://doi.org/10.1021/ma011873w
  10. A. J. Chmura, D. M. Cousins, M. G. Davidson, M. D. Jones, M. D. Lunn, and M. F. Mahon, Dalton Trans., 11, 1437 (2008).
  11. M. H. Chisholm, J. C. Gallucci, and K. Phomphrai, Inorg. Chem., 44, 8004 (2005). https://doi.org/10.1021/ic048363d
  12. M. H. Chisholm, J. C. Gallucci, and K. Phomphrai, Inorg. Chem., 43, 6717 (2004). https://doi.org/10.1021/ic0490730
  13. R. Mehta, V. Kumar, H. Bhunia, and S. N. Upadhyay, J. Macromol. Sci. Part C: Polym. Rev., 45, 325 (2005). https://doi.org/10.1080/15321790500304148
  14. D. Garlotta, J. Polym. Environ., 9, 63 (2001). https://doi.org/10.1023/A:1020200822435
  15. J. Y. Yoo and Y. S. Ko, Polymer(Korea), 36, 693 (2012).
  16. E. Kim, E. W. Shin, I. K. Yoo, and J. S. Shung, Macromol. Res., 17, 346 (2009). https://doi.org/10.1007/BF03218873
  17. A. Prebe, P. Alcouffe, P. Cassagnau, and J. F. Gerard, Mater. Chem. Phys., 124, 399 (2010). https://doi.org/10.1016/j.matchemphys.2010.06.054
  18. J. R. Severn, J. C. Chadwick, R. Duchateau, and N. Friedeichs, Chem. Rev., 105, 4073 (2005). https://doi.org/10.1021/cr040670d
  19. C. Miola, T. Hamaide, and R. Spitz, Polymer, 38, 5667 (1997). https://doi.org/10.1016/S0032-3861(97)00115-8
  20. J. Y. Yoo, Y. Kim, and Y. S. Ko, J. Ind. Eng. Chem., 19, 1137 (2012).
  21. H. Tsuji, Macromol. Biosci., 5, 569 (2005). https://doi.org/10.1002/mabi.200500062
  22. T. Furnkawa, H. Sato, R. Murakami, J. Zhang, Y. X. Duan, I. Noda, S. Ochiai, and Y. Ozaki, Macromolecules, 38, 6445 (2005). https://doi.org/10.1021/ma0504668

Cited by

  1. Ti(dibenzoylmethane)2(O-i-Pr)2 합성과 L-락티드 개환중합 vol.42, pp.2, 2018, https://doi.org/10.7317/pk.2018.42.2.261