• Title/Summary/Keyword: polymeric surfactants

Search Result 29, Processing Time 0.022 seconds

Synthesis of Polymeric Surfactants Using CSTR and Their Emulsion PSA Properties (연속 교반 반응기를 이용한 고분자 유화제 합성 및 에멀션 점착 물성)

  • Seung-Min Lim;Myung-Cheon Lee
    • Journal of Adhesion and Interface
    • /
    • v.24 no.3
    • /
    • pp.77-85
    • /
    • 2023
  • In this research, polymeric anionic surfactants having various molecular weights and acid values were synthesized using a continuous stirred tank reactor (CSTR). The CSTR has an advantage of higher production rate and more constant product properties compared to batch and semi-batch reactors. The polymeric surfactants were made using butyl acrylate as a hydrophobic group and acrylic acid as a hydrophilic group. The synthesized polymeric surfactants were ionized with alkali solution and were used as an anionic surfactant. To investigate the properties as a surfactant, the properties of the synthesized surfactant, such as acid value, critical micelle concentration (CMC) and molecular weight, were measured. The results showed that the acid values of the polymeric surfactants were 60 to 380 and a number average molecular weight were 8,000 to 13,000 g/mol. Also, it was found that the CMC was around 0.01 g/ml, which showed similar level values with ordinary surfactant. To prove the performance of the polymeric surfactant, acrylic emulsion PSAs were synthesized using the acquired polymeric surfactant. The results showed that the maximum peel strength of 21.24 N/25mm when acid value was 150 and molecular weight was 8,500 g/mol. The values of peel strength and initial tack of acrylic emulsion PSAs using polymeric surfactant synthesized in this study showed much higher than those of reference PSAs synthesized using ordinary anionic surfactant, SDS (Sodium Dodecyl Sulfate) and SDS/TRX (Triton X-100).

Stereoselective Solvolyses of Activated Esters in the Aggregate System of Imidazole-Containing Copolymeric Surfactants

  • Cho, I-Whan;Lee, Burm-Jong
    • Bulletin of the Korean Chemical Society
    • /
    • v.10 no.2
    • /
    • pp.172-177
    • /
    • 1989
  • Stereoselective solvolyses of optically active activated esters in the aggregate system of optically active polymeric surfactants containing imidazole and benzene moieties were performed. The catalyst polymers employed were copolymers of N-methacryloyl-L-histidine methyl ester (MHis) with N,N-dimethyl-N-hexadecyl-N-[10-(p-methacryloylo xyphenoxycarbonyl)-decyl]ammonium bromide(DEMAB). In the solvolyses of N-carbobenzoxy-D- and L-phenylalanine p-nitrophenyl esters (D-NBP and L-NBP) by polymeric catalysts, copoly(MHis-DEMAB) exhibited not only increased catalytic activity but also enhanced enantioselectivity as the mole ${\%}$ of surfactant monomers in the copolymers increased. The polymeric catalysts showed noticeable enantioselective solvolyses toward D- and L-NBP of the substrates employed. As the reaction temperature was lowered for the solvolyses of D- and L-NBP with the catalyst polymer containing 3.5 mole ${\%}$ of MHis, the increased reaction rate and enhanced enantioselectivity were observed. The coaggregative systems of the polymer and monomeric surfactants were also investigated. In the case of coaggregate system consisted of 70 mole ${\%}$ of cetyldimethylethylammonium bromide with polymeric catalyst showed maximum enantioselective catalysis, viz., $k_{cat}(L)/k_{cat}(D)$ = 2.85. The catalyst polymers in the sonicated solvolytic solutions were confirmed to form large aggregate structure by electron microscopic observation.

Study on Anti-Washout Properties and Shear-Thickening Behaviors of Surfactant Added Cement Grouts (계면활성제 혼화제를 첨가한 시멘트 그라우트의 수중 불분리 특성 발현과 점도 증가 효과 연구)

  • Jang, In-Kyu;Seo, Seung-Ree;Park, Seung-Kyu
    • Applied Chemistry for Engineering
    • /
    • v.23 no.5
    • /
    • pp.480-484
    • /
    • 2012
  • Concrete, the mixture of cement, sand, gravel and water, is a suspension substance extensively used to construct building materials. When a concrete mortar is applied to the underwater construction, the rheology of concrete is of great importance to its flow performance, placement, anti-washout and consolidation. In this research, the anti-washout and rheological properties of concrete have been investigated with concrete admixtures prepared by adding anionic surfactants, cationic surfactants, and polymeric thickeners. The concrete mortar formulated by pseudo-polymeric systems with the electrostatic association of anionic and cationic surfactants, showed high viscosities and suitable anti-washout properties, but poor pumpabilities. The addition of poly methyl vinyl ether to the mixed surfactant system exhibits synergistic effects by improving the concrete mortar properties of the concrete mortar such as fluidity, visco-elastic property, self-leveling, and anti-washout.

Trend on Development of Polymeric Organosilicone Surfactants (고분자 유기실리콘 계면활성제의 개발 동향)

  • Rang, Moon Jeong
    • Journal of the Korean Applied Science and Technology
    • /
    • v.32 no.3
    • /
    • pp.546-567
    • /
    • 2015
  • Silicone-based surfactants consist of a hydrophobic organosilicone group coupled to one or more hydrophilic polar groups, while the hydrophobic groups of hydrocarbon surfactants are hydrocarbons. Silicone surfactants have been widely used in many industrial fields starting from polyurethane foam to construction materials, cosmetics, paints & inks, agrochemicals, etc., because of their low surface tension, lubricity, spreading, water repellency and thermal and chemical stability. A wide range of silicone surfactant structures are required to provide the functional diversity for reflecting the necessities in the various applications. This review covers the basic properties and the synthetic schemes of polydimethylsiloxane and reactive polysiloxanes as hydrophobic siloxane backbones, the main reaction schemes, such as hydrosilylation reaction, for coupling reactive polysiloxanes to hydrophilic groups, and the synthetic schemes of the main polysiloxane surfactants including polyether-, ionic-, carbohydrate-type surfactants.

Synthesis of Various Polymeric Prodrugs of Ibuprofen with PEG and Its Derivative as Polymeric Carriers

  • Lee, Chan-Woo
    • Macromolecular Research
    • /
    • v.12 no.1
    • /
    • pp.63-70
    • /
    • 2004
  • We have synthesized various types of poly(ethylene glycol) (PEG)-ibuprofen conjugates by the nucleophilic substitution of bromo-terminated PEG with ibuprofen-Cs salt; PN (Pluronic) was also used in place of PEG. All the bromo-terminated PEGs and PN were obtained in high yield. Conversions of the terminal hydroxyl groups to bromo-termini were quantitative, as were the drug conjugation processes. The Ι$_1$$_3$values obtained from solutions of the ibuprofen-conjugated prodrugs are summarized in relation to those of ibuprofen in water and in aqueous solutions of the original PEG, PN, and several ordinary surfactants. We believe that the fully hydrophilic PEG is completely hydrated and forms no hydrophobic pocket by segment aggregation. These results indicate that the probe environment is significantly hydrophobic, particularly in the solution of prodrug PN, for which the ratio is similar to that obtained from typical micelles of surfactants. The results suggest, therefore, that the present synthetic method is very useful for preparing PEG-based prodrugs from pharmaceuticals having carboxyl functionalities.

A Study on Adsorption of Anionic Surfactants with Nonionic Resins (비이온성 수지를 이용한 음이온 계면활성제의 흡착에 관한 연구)

  • Seo, Yang-Gon;Ahn, Jou-Hyeon;Heo, Byeong-Young
    • Journal of Environmental Science International
    • /
    • v.5 no.3
    • /
    • pp.369-376
    • /
    • 1996
  • The adsorption of the anionic surfactants, sodium lauryl sulfate (SLS) and sodium dodecylbenzene sulfonate (SDBS) anion surfactants form aqueous solutions with nonionic resins, Amberlite XAD-2, XAD-4 and XAD-7 at temperatures in 15~45$^{\circ}C$ range was studied. Several adsorption isotherm models were used to fit the experimental data, The best results were obtained with the Redlich-Peterson equation and the Freundlich model provided remarkably good fits. For a particular resin at a particular temperature, SDBS was more extensively adsorbed than SLS. The highest adsorption were obtained with XAD-4 resin and the specific surface area of the resins plays a major role in adsorption of the surfactants. Estimations of the isosteric heat of adsorption were indicative of an exothermic process, and their magnitudes manifested a physisorption process.

  • PDF

Surface-modified Cellulose Nanofibril Surfactants for Stabilizing Oil-in-Water Emulsions and Producing Polymeric Particles (표면 개질된 나노피브릴화 셀룰로오스를 이용한 에멀젼 안정화 및 고분자 입자 제조)

  • Kim, Bo-Young;Moon, Jiyeon;Yoo, Myong Jae;Kim, Seonmin;Kim, Jeongah;Yang, Hyunseung
    • Applied Chemistry for Engineering
    • /
    • v.32 no.1
    • /
    • pp.110-116
    • /
    • 2021
  • In this work, the surface of hydrophilic cellulose nanofibrils (CNFs) was modified precisely by varying amounts of cetyltrimethylammonium bromide (CTAB) to produce CNF-based particle surfactants. We found that a critical CTAB density was required to generate amphiphilic CTAB-grafted CNF (CNF-CTAB). Compared to pristine CNF, CNF-CTAB was highly efficient at stabilizing oil-in-water Pickering emulsions. To evaluate their effectiveness as particle surfactants, the surface coverage of oil-in-water emulsion droplets was determined by changing the CNF-CTAB concentration in the aqueous phase. Furthermore, styrene-in-water stabilized by CNF-CTAB surfactants was thermally polymerized to produce CNF-stabilized polystyrene (PS) particles, offering a great potential for various applications including pharmaceuticals, cosmetics, and petrochemicals.

Synthesis of Alginate-derived Polymeric Surfactants (알지네이트계 고분자 계면활성제의 합성)

  • 강현아
    • KSBB Journal
    • /
    • v.15 no.4
    • /
    • pp.375-379
    • /
    • 2000
  • Alginate derivatives possessing various lengths of alkyl amine (C8, C12, C16) chain were prepared by oxidation followed by reductive amination of alginate and the products were characterized by spectral analysis. The surface tension critical micelle concentration (c. m. c) and solubility of a hydrophobic compound azobenzene were examined. Series of synthesized alginate-derived polymeric surfactants(APSs) reduced the surface tension. The dissolving capacity of APSs toward azobenzene was about half that of SDS. In order to investigate the capacity of metal adsorption Co and Pb were selected as a representative metal. The overall removal efficiency of APSs were high compared with that of alginate at pH 3.5 and 7 respectively. Major mechanism of the heavy metal removal is the complex of metal with carboxyl group.

  • PDF

Combinatorial Methods for Characterization and Optimization of Polymer Formulations

  • Amis Eric J.
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.110-111
    • /
    • 2006
  • Most applications of polymers involve blends and mixtures of components including solvents, surfactants, copolymers, fillers, organic or inorganic functional additives, and various processing aids. These components provide unique properties of polymeric materials even beyond those tailored into the basic chemical structures. In addition, skillful processing extends the properties for even greater applications. The perennial challenge of polymer science is to understand and exploit the structure-processing-property interplay relationship. We are developing and demonstrating combinatorial methods and high throughput analysis as tools to provide this fundamental understanding.

  • PDF

Synthesis of KIT-1 Mesoporous Silicates Showing Two Different Macrosporous Strucrtues; Inverse-opal or Hollow Structures (거대기공 구조-역오팔 또는 중공 구조를 갖는 KIT-1 메조포러스 실리케이트의 제조)

  • Baek, Youn-Kyoung;Lee, Jung-Goo;Kim, Young Kuk
    • Journal of Powder Materials
    • /
    • v.23 no.3
    • /
    • pp.189-194
    • /
    • 2016
  • We report a facile method for preparing KIT-1 mesoporous silicates with two different macroporous structures by dual templating. As a template for macropores, polystyrene (PS) beads are assembled into uniform three dimensional arrays by ice templating, i.e., by growing ice crystals during the freezing process of the particle suspension. Then, the polymeric templates are directly introduced into the precursor-gel solution with cationic surfactants for templating the mesopores, which is followed by hydrothermal crystallization and calcination. Later, by burning out the PS beads and the surfactants, KIT-1 mesoporous silicates with macropores are produced in a powder form. The macroporous structures of the silicates can be controlled by changing the amount of EDTANa4 salt under the same templating conditions using the PS beads and inverse-opal or hollow structures can be obtained. This strategy to prepare mesoporous powders with controllable macrostructures is potentially useful for various applications especially those dealing with bulky molecules such as, catalysis, separation, drug carriers and environmental adsorbents.