Browse > Article
http://dx.doi.org/10.14478/ace.2020.1109

Surface-modified Cellulose Nanofibril Surfactants for Stabilizing Oil-in-Water Emulsions and Producing Polymeric Particles  

Kim, Bo-Young (Electronic Convergence Materials & Device Research Center, Korea Electronics Technology Institute)
Moon, Jiyeon (Nano Materials & Component Research Center, Korea Electronics Technology Institute)
Yoo, Myong Jae (Electronic Convergence Materials & Device Research Center, Korea Electronics Technology Institute)
Kim, Seonmin (Nano Materials & Component Research Center, Korea Electronics Technology Institute)
Kim, Jeongah (Electronic Convergence Materials & Device Research Center, Korea Electronics Technology Institute)
Yang, Hyunseung (Electronic Convergence Materials & Device Research Center, Korea Electronics Technology Institute)
Publication Information
Applied Chemistry for Engineering / v.32, no.1, 2021 , pp. 110-116 More about this Journal
Abstract
In this work, the surface of hydrophilic cellulose nanofibrils (CNFs) was modified precisely by varying amounts of cetyltrimethylammonium bromide (CTAB) to produce CNF-based particle surfactants. We found that a critical CTAB density was required to generate amphiphilic CTAB-grafted CNF (CNF-CTAB). Compared to pristine CNF, CNF-CTAB was highly efficient at stabilizing oil-in-water Pickering emulsions. To evaluate their effectiveness as particle surfactants, the surface coverage of oil-in-water emulsion droplets was determined by changing the CNF-CTAB concentration in the aqueous phase. Furthermore, styrene-in-water stabilized by CNF-CTAB surfactants was thermally polymerized to produce CNF-stabilized polystyrene (PS) particles, offering a great potential for various applications including pharmaceuticals, cosmetics, and petrochemicals.
Keywords
Cellulose; Cellulose nanofibrils; Emulsion; Surface modification; CTAB;
Citations & Related Records
연도 인용수 순위
  • Reference
1 R. Aveyard, B. P. Binks, and J. H. Clint, Emulsions stabilised solely by colloidal particles, Adv. Colloid Interface Sci., 100-102, 503-546 (2003).   DOI
2 K. Stratford, R. Adhikari, I. Pagonabarraga, J. C. Desplat, and M. E. Cates, Chemistry: Colloidal jamming at interfaces: A route to fluid-bicontinuous gels, Science, 309, 2198-2201 (2005).   DOI
3 A. D. Dinsmore, M. F. Hsu, M. G. Nikolaides, M. Marquez, A. R. Bausch, and D. A. Weitz, Colloidosomes: Selectively permeable capsules composed of colloidal particles, Science, 298, 1006-1009 (2002).   DOI
4 B. P. Binks, Particles as surfactants - Similarities and differences, Curr. Opin. Colloid Interface Sci., 7, 21-41 (2002).   DOI
5 E. Vignati, R. Piazza, and T. P. Lockhart, Pickering emulsions: Interfacial tension, colloidal layer morphology, and trapped-particle motion, Langmuir, 19, 6650-6656 (2003).   DOI
6 T. Chen, P. J. Colver, and S. A. F. Bon, Organic-inorganic hybrid hollow spheres prepared from TiO2-stabilized Pickering emulsion polymerization, Adv. Mater., 19, 2286-2289 (2007).   DOI
7 P. Van Rijn, N. C. Mougin, D. Franke, H. Park, and A. Boker, Pickering emulsion templated soft capsules by self-assembling cross-linkable ferritin-polymer conjugates, Chem. Commun., 47, 8376-8378 (2011).   DOI
8 J. Xu, A. Ma, Z. Xu, X. Liu, D. Chu, and H. Xu, Synthesis of Au and Pt hollow capsules with single holes via Pickering emulsion strategy, J. Phys. Chem. C., 119, 28055-28060 (2015).   DOI
9 D. Lee and D. A. Weitz, Nonspherical colloidosomes with multiple compartments from double emulsions, Small, 5, 1932-1935 (2009).   DOI
10 D. Lee and D. A. Weitz, Double emulsion-templated nanoparticle colloidosomes with selective permeability, Adv. Mater., 20, 3498-3503 (2008).   DOI
11 S. Cauvin, P. J. Colver, and S. A. F. Bon, Pickering stabilized miniemulsion polymerization: Preparation of clay armored latexes, Macromolecules, 38, 7887-7889 (2005).   DOI
12 M. Tang, X. Wang, F. Wu, Y. Liu, S. Zhang, X. Pang, X. Li, and H. Qiu, Au nanoparticle/graphene oxide hybrids as stabilizers for Pickering emulsions and Au nanoparticle/graphene oxide@polystyrene microspheres, Carbon, 71, 238-248 (2014).   DOI
13 F. Tu, B.J. Park, and D. Lee, Thermodynamically stable emulsions using Janus dumbbells as colloid surfactants, Langmuir, 29, 12679-12687 (2013).   DOI
14 H. Zhou, T. Shi, X. Zhou, Preparation of polystyrene/SiO2 microsphere via Pickering emulsion polymerization: Synergistic effect of SiO2 concentrations and initiator sorts, Appl. Surf. Sci., 266, 33-38 (2013).   DOI
15 B. L. Tardy, S. Yokota, M. Ago, W. Xiang, T. Kondo, R. Bordes, and O. J. Rojas, Nanocellulose-surfactant interactions, Curr. Opin. Colloid Interface Sci., 29, 57-67 (2017).   DOI
16 L. Bai, S. Lv, W. Xiang, S. Huan, D. J. McClements, and O. J. Rojas, Oil-in-water Pickering emulsions via microfluidization with cellulose nanocrystals: 1. Formation and stability, Food Hydrocoll., 96, 699-708 (2019).   DOI
17 H. P. S. Abdul Khalil, A. H. Bhat, and A. F. Ireana Yusra, Green composites from sustainable cellulose nanofibrils: A review, Carbohydr. Polym., 87, 963-979 (2012).   DOI
18 L. Bai, S. Huan, W. Xiang, L. Liu, Y. Yang, R. W. N. Nugroho, Y. Fan, and O. J. Rojas, Self-assembled networks of short and long chitin nanoparticles for oil/water interfacial superstabilization, ACS Sustain. Chem. Eng., 7, 6497-6511 (2019).   DOI
19 W. Chen, H. Yu, S.Y. Lee, T. Wei, J. Li, and Z. Fan, Nanocellulose: A promising nanomaterial for advanced electrochemical energy storage, Chem. Soc. Rev., 47, 2837-2872 (2018).   DOI
20 S. Alila, S. Boufi, M. N. Belgacem, and D. Beneventi, Adsorption of a cationic surfactant onto cellulosic fibers I. Surface charge effects, Langmuir, 21, 8106-8113 (2005).   DOI
21 D. K. Owens and R. C. Wendt, Estimation of the surface free energy of polymers, J. Appl. Polym. Sci., 13, 1741-1747 (1969).   DOI
22 E. Y. Bryleva, N. A. Vodolazkaya, N. O. Mchedlov-Petrossyan, L. V. Samokhina, N. A. Matveevskaya, and A. V. Tolmachev, Interfacial properties of cetyltrimethylammonium-coated SiO2 nanoparticles in aqueous media as studied by using different indicator dyes, J. Colloid Interface Sci., 316, 712-722 (2007).   DOI
23 C. Tang, S. Spinney, Z. Shi, J. Tang, B. Peng, J. Luo, and K. C. Tam, Amphiphilic cellulose nanocrystals for enhanced Pickering emulsion stabilization, Langmuir, 34, 12897-12905 (2018).   DOI
24 K. Xhanari, K. Syverud, and P. Stenius, Emulsions stabilized by microfibrillated cellulose: The effect of Hydrophobization, concentration and O/W ratio, J. Dispers. Sci. Technol., 32, 447-452 (2011).   DOI
25 J. Zhou, X. Qiao, B.P. Binks, K. Sun, M. Bai, Y. Li, and Y. Liu, Magnetic Pickering emulsions stabilized by Fe3O4 nanoparticles, Langmuir, 27, 3308-3316 (2011).   DOI
26 H. Yang, D. J. Kang, K. H. Ku, H. H. Cho, C. H. Park, J. Lee, D. C. Lee, P. M. Ajayan, and B. J. Kim, Highly luminescent polymer particles driven by thermally reduced graphene quantum dot surfactants, ACS Macro Lett., 3, 985-990 (2014).   DOI
27 I. Capron, O. J. Rojas, R. Bordes, Behavior of nanocelluloses at interfaces, Curr. Opin. Colloid Interface Sci., 29, 83-95 (2017).   DOI
28 M. Matos, A. Marefati, R. Bordes, G. Gutierrez, M. Rayner, Combined emulsifying capacity of polysaccharide particles of different size and shape, Carbohydr. Polym., 169, 127-138 (2017).   DOI
29 Y. Goi, S. Fujisawa, T. Saito, K. Yamane, K. Kuroda, and A. Isogai, Dual functions of TEMPO-oxidized cellulose nanofibers in oil-in-water emulsions: A Pickering emulsifier and a unique dispersion stabilizer, Langmuir, 35, 10920-10926 (2019).   DOI
30 N. Nikfarjam, N. Taheri Qazvini, and Y. Deng, Surfactant free Pickering emulsion polymerization of styrene in w/o/w system using cellulose nanofibrils, Eur. Polym. J., 64, 179-188 (2015).   DOI
31 I. Kalashnikova, H. Bizot, P. Bertoncini, B. Cathala, and I. Capron, Cellulosic nanorods of various aspect ratios for oil in water Pickering emulsions, Soft Matter, 9, 952-959 (2013).   DOI
32 Z. Hu, S. Ballinger, R. Pelton, and E. D. Cranston, Surfactant-enhanced cellulose nanocrystal Pickering emulsions, J. Colloid Interface Sci., 439, 139-148 (2015).   DOI
33 J. Ojala, M. Visanko, O. Laitinen, M. Osterberg, J.A. Sirvio, H. Liimatainen, Emulsion stabilization with functionalized cellulose nanoparticles fabricated using deep eutectic solvents, Molecules, 23, 2765-2782 (2018).   DOI
34 M. Andresen and P. Stenius, Water-in-oil emulsions stabilized by hydrophobized microfbrillated cellulose, J. Dispers. Sci. Technol., 28, 837-844 (2007).   DOI
35 I. Kalashnikova, H. Bizot, B. Cathala, and I. Capron, New Pickering emulsions stabilized by bacterial cellulose nanocrystals, Langmuir, 27, 7471-7479 (2011).   DOI
36 A. G. Cunha, J. B. Mougel, B. Cathala, L. A. Berglund, and I. Capron, Preparation of double Pickering emulsions stabilized by chemically tailored nanocelluloses, Langmuir, 30, 9327-9335 (2014).   DOI
37 C. Wen, Q. Yuan, H. Liang, and F. Vriesekoop, Preparation and stabilization of d-limonene Pickering emulsions by cellulose nanocrystals, Carbohydr. Polym., 112, 695-700 (2014).   DOI
38 T. Winuprasith and M. Suphantharika, Microfibrillated cellulose from mangosteen (Garcinia mangostana L.) rind: Preparation, characterization, and evaluation as an emulsion stabilizer, Food Hydrocoll., 32, 383-394 (2013).   DOI
39 Y. Zhang, V. Karimkhani, B. T. Makowski, G. Samaranayake, and S. J. Rowan, Nanoemulsions and nanolatexes stabilized by hydrophobically functionalized cellulose nanocrystals, Macromolecules, 50, 6032-6042 (2017).   DOI
40 M. Visanko, H. Liimatainen, J.A. Sirviö, J. P. Heiskanen, J. Niinimäki, and O. Hormi, Amphiphilic cellulose nanocrystals from acid-free oxidative treatment: Physicochemical characteristics and use as an oil-water stabilizer, Biomacromolecules, 15, 2769-2775 (2014).   DOI
41 Q. Li, Y. Wang, Y. Wu, K. He, Y. Li, X. Luo, B. Li, C. Wang, and S. Liu, Flexible cellulose nanofibrils as novel Pickering stabilizers: The emulsifying property and packing behavior, Food Hydrocoll., 88, 180-189 (2019).   DOI
42 C. A. Carrillo, T. E. Nypelö, O. J. Rojas, Cellulose nanofibrils for one-step stabilization of multiple emulsions (W/O/W) based on soybean oil, J. Colloid Interface Sci., 445, 166-173 (2015).   DOI
43 D. Klemm, F. Kramer, S. Moritz, T. Lindstrom, M. Ankerfors, D. Gray, and A. Dorris, Nanocelluloses: A new family of nature-based materials, Angew. Chemie - Int. Ed., 50, 5438-8466 (2011)   DOI
44 N. Lavoine, I. Desloges, A. Dufresne, and J. Bras, Microfibrillated cellulose - Its barrier properties and applications in cellulosic materials: A review, Carbohydr. Polym., 90, 735-764 (2012).   DOI
45 A. Isogai, T. Saito, and H. Fukuzumi, TEMPO-oxidized cellulose nanofibers, Nanoscale, 3, 71-85 (2011).   DOI
46 D. Yin, Q. Zhang, C. Yin, Y. Jia, and H. Zhang, Effect of particle coverage on morphology of SiO2-covered polymer microspheres by Pickering emulsion polymerization, Colloids Surfaces A Physicochem. Eng. Asp., 367, 70-75 (2010).   DOI
47 K. Y. A. Lin, H. Yang, C. Petit, and W. der Lee, Magnetically controllable Pickering emulsion prepared by a reduced graphene oxide-iron oxide composite, J. Colloid Interface Sci., 438, 296-305 (2015).   DOI
48 H. Fukuzumi, T. Saito, and A. Isogai, Influence of TEMPO-oxidized cellulose nanofibril length on film properties, Carbohydr. Polym., 93, 172-177 (2013).   DOI