• 제목/요약/키워드: polymeric layer

검색결과 180건 처리시간 0.027초

수퍼커패시터용 수용성 고분자 젤 전해질의 전기화학적 특성 (Electrochemical Characteristics of Aqueous Polymeric Gel Electrolyte for Supercapaictor)

  • 김한주;;;박수길
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2001년도 추계학술대회 논문집 Vol.14 No.1
    • /
    • pp.93-96
    • /
    • 2001
  • We have reported to make nanostructured cobalt oxide electrode that have large capacitance over than 400F/g (specific capacitance) and good cycleability. But, It had serious demerits of low voltage range under 0.5V and low power density. Therefore, we need to increase voltage range of cobalt oxide electrode. we report here on the electrochemical properties of sol-gel-derived nanoparticulate cobalt xerogel in 1M KOH solution and aqueous polymeric gel electrolyte. In solution electrolyte, cobalt oxide electrode had over than 250F/g capacitance consisted of EDLC and pseudocapacitance. In gel electrolyte, cobalt oxide electrode had around l00F/g capacitance. This capacitance was only surface EDLC. In solution electrolyte, potassium ion as working ion reacted with both of layers easily. However, In gel electrolyte, reacted with only surface-active layer. Its very hard to reach resistive layer. So, we have studied on pretreatment of electrode to contain working ions easily. We'll report more details.

  • PDF

수퍼커패시터용 수용성 고분자 젤 전해질의 전기화학적 특성 (Electrochemical Characteristics of Aqueous Polymeric Gel Electrolyte for Supercapacitor)

  • 김한주;;;박수길
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2001년도 추계학술대회 논문집
    • /
    • pp.93-96
    • /
    • 2001
  • We have reported to make nanostructured cobalt oxide electrode that have large capacitance over than 400F/g (specific capacitance) and good cycleability. But, It had serious demerits of low voltage range under 0.5V and low power density. Therefore, we need to increase voltage range of cobalt oxide electrode. we report here on the electrochemical properties of sol-gel-derived nanoparticulate cobalt xerogel in 1M KOH solution and aqueous polymeric gel electrolyte. In solution electrolyte, cobalt oxide electrode had over than 250F/g capacitance consisted of EDLC and pseudocapacitance. In gel electrolyte, cobalt oxide electrode had around 100F/g capacitance. This capacitance was only surface EDLC. In solution electrolyte, potassium ion as working ion reacted with both of layers easily. However, In gel electrolyte, reacted with only surface-active layer. Its very hard to reach resistive layer. So, e have studied on pretretmetn of electrode to contain working ions easily. We'll report more details.

  • PDF

고밀도 패턴드 미디어 성형에 관한 연구 (Replication of High Density Patterned Media)

  • 이남석;최용;강신일
    • 정보저장시스템학회논문집
    • /
    • 제1권2호
    • /
    • pp.192-196
    • /
    • 2005
  • In this paper, we investigated the possibility of replicating patterned media by nano-injection molding process with a metallic nano-stamper. The original nano-master was fabricated by E-beam lithography and ICP etching process. The metallic nano-stamper was fabricated using a nanoimprint lithography and nano-electroforming process. The nano-patterned substrate was replicated using a nano-injection molding process without additional etching process. In nano-injection molding process, since the solidified layer, generated during the polymer filling, deteriorates transcribability of nano patterns by preventing the polymer melt from filling the nano cavities, an injection-mold system was constructed to actively control the stamper surface temperature using MEMS heater and sensors. The replicated polymeric patterns using nano-injection molding process were as small as 50 nm in diameter, 150 nm in pitch, and 50 nm in depth. The replicated polymeric patterns can be applied to high density patterned media.

  • PDF

온도변화로 인해 고분자 박막에 발생하는 열응력 해석 (Analysis of Thermal Stresses Induced in Polymeric Thin Layer Due to Temperature Change)

  • 이상순
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2002년도 가을 학술발표회 논문집
    • /
    • pp.146-152
    • /
    • 2002
  • In this study, the singular thermal stresses induced during cooling down from high temperature to room temperature have been analyzed for the viscoelastic thin layer. The time domain boundary element method has been employed to investigate the behavor of stresses for the whole interface. Within the context of a linear viscoelastic theory, a stress singularity exists at the point where the interface between the elastic substrate and the viscoelastic thin layer intersects the free surface.

  • PDF

Simultaneous Transfer and Patterning of CVD-Grown Graphene with No Polymeric Residues by Using a Metal Etch Mask

  • 장미;정진혁;;이내응
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제44회 동계 정기학술대회 초록집
    • /
    • pp.642-642
    • /
    • 2013
  • Graphene, two dimensional single layer of carbon atoms, has tremendous attention due to its superior property such as high electron mobility, high thermal conductivity and optical transparency. Especially, chemical vapor deposition (CVD) grown graphene has been used as a promising material for high quality and large-scale graphene film. Unfortunately, although CVD-grown graphene has strong advantages, application of the CVD-grown graphene is limited due to ineffective transfer process that delivers the graphene onto a desired substrate by using polymer support layer such as PMMA(polymethyl methacrylate). The transferred CVD-grown graphene has serious drawback due to remaining polymeric residues generated during transfer process, which induces the poor physical and electrical characteristics by a p-doping effect and impurity scattering. To solve such issue incurred during polymer transfer process of CVD-grown graphene, various approaches including thermal annealing, chemical cleaning, mechanical cleaning have been tried but were not successful in getting rid of polymeric residues. On the other hand, lithographical patterning of graphene is an essential step in any form of microelectronic processing and most of conventional lithographic techniques employ photoresist for the definition of graphene patterns on substrates. But, application of photoresist is undesirable because of the presence of residual polymers that contaminate the graphene surface consistent with the effects generated during transfer process. Therefore, in order to fully utilize the excellent properties of CVD-grown graphene, new approach of transfer and patterning techniques which can avoid polymeric residue problem needs to be developed. In this work, we carried out transfer and patterning process simultaneously with no polymeric residue by using a metal etch mask. The patterned thin gold layer was deposited on CVD-grown graphene instead of photoresists in order to make much cleaner and smoother surface and then transferred onto a desired substrate with PMMA, which does not directly contact with graphene surface. We compare the surface properties and patterning morphology of graphene by scanning electron microscopy (SEM), atomic force microscopy(AFM) and Raman spectroscopy. Comparison with the effect of residual polymer and metal on performance of graphene FET will be discussed.

  • PDF

양이온성 로진 에멀션의 응결현상이 도공층의 잉크흡수성에 미치는 영향 (Coagulation of Cationic Rosin Emulsion and its Effect on Ink Receptivity of Coating Layer)

  • 박철웅;이학래
    • 펄프종이기술
    • /
    • 제30권3호
    • /
    • pp.74-83
    • /
    • 1998
  • The phenomenon of decrease in sizing efficiency when the stock temperature is increased is well recognized as summer sizing, and this is believed to be caused by uneven distribution of sizing agents on paper surface most often incurred by coagulation of sizing agents. When unevenly sized paper is used as coating base stock, nonuniform consolidation of the coating layer may result, which, in turn, causes uneven distribution of binder on coating surface. This causes nonuniform ink absorption to produce print mottle. In this study the effects of simple or polymeric electrolytes, storage temperature and time on the coagulation of cationic dispersed rosin size were investigated using a turbidity measurement method which was verified to correlate well with the particle size of rosin emulsion or its coagulates. Handsheets sized with rosin dispersions coagulated under various conditions were prepared and their sizing degree and coated paper properties including gloss and ink density were examined. The relationship between the sizing nonuniformity of coated papers and its ink absorption property was evaluated. Turbidity of rosin emulsion increased as the storage temperature and time were increased. Addition of simple or polymeric electrolytes caused reduction in $zeta$ -potential of the rosin dispersion and accelerated the coagulation tendency substantially. Reversion of the $zeta$ -potential of rosin dispersion, however, did not occur when coagulation was induced with simple electrolytes. On the other hand, addition of an anionic polyelectrolyte reversed the $zeta$ -potential of the flocculated rosin dispersion. This indicated that electrical double layer compaction and bridging flocculation were coagulation mechanisms for simple and polymeric electrolytes, respectively. Sizing degree decreased as coagulation of rosin was increased. Paper gloss, ink gloss and ink density were increased when sizing degree of base stock was increased most probably due to prevention of base paper swelling and increased binder migration to coating surface. This suggested that uneven printing ink density occurred when uneven sizing development was induced by coagulation of rosin particles.

  • PDF

Synthesis of Tripod-shaped Liquid Crystals with sp3 Nitrogen at the Apex

  • Jung, Hyun-Chul;Lee, Seng-Kue;Lee, Guk-Sik;Shin, Hwa-Jin;Park, Song-Ju;Lee, Jong-Gun;Watanabe, Junji;Takezoe, Hideo;Kang, Kyung-Tae
    • Bulletin of the Korean Chemical Society
    • /
    • 제30권9호
    • /
    • pp.1946-1950
    • /
    • 2009
  • Tripod-shaped liquid crystals with $sp^3$ nigrogen at the apex were prepared from triethanolamine. Their physical properties were investigated by using optical microscopy, differential scanning calorimetry, and X-ray diffraction measurements. The XRD study suggests that the tripod-shaped molecules show the 2D-ordered phase of either the frustrated smectic layer structure or discotic columnar phases.

Electrical Characteristics of Bottom-Contact Organic Thin-Film-Transistors Inserting Adhesion Layer Fabricated by Vapor Deposition Polymerization and Ti Adhesion Metal Layer

  • Park, Il-Houng;Hyung, Gun-Woo;Choi, Hak-Bum;Kim, Young-Kwan
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2007년도 7th International Meeting on Information Display 제7권1호
    • /
    • pp.958-961
    • /
    • 2007
  • The electrical characteristics of organic thin-filmtransistor (OTFTs) can be improved by inserting adhesion layer on gate dielectrics. Adhesion layer was used as polymeric adhesion layer deposited on inorganic gate insulators such as silicon dioxide $(SiO_2)$ and it was formed by vapor deposition polymerization (VDP) instead of spin-coating process. The OTFTs obtained the on/off ratio $of{\sim}10^4$, threshold voltage of 1.8V, subthreshold slop of 2.9 V/decade and field effect mobility about $0.01\;cm^2/Vs$.

  • PDF

Ordered Hybrid Nanomaterials from Self-Assembled Polymeric Building Blocks

  • Kim, Dong-Ha
    • 한국고분자학회:학술대회논문집
    • /
    • 한국고분자학회 2006년도 IUPAC International Symposium on Advanced Polymers for Emerging Technologies
    • /
    • pp.309-309
    • /
    • 2006
  • Latest developments on hybrid nanostructured materials fabricated by applying self-assembly strategies on organic/inorganic nanotemplates are discussed. Within this frame, numerous functional nanomaterials including arrays of composite metal/semiconductor nanoparticles, planar waveguides and functional multilayer thin films are generated using self-assembled polymers as templates or building blocks. In particular, surface plasmon resonance based optical sensing is employed to investigate nanofabrication processes occurring in nanoscale dimention. We also suggest unprecedented pathways to hybrid supramolecular multilayer nanoarchitectures in 1D or 2D geometry via layer-by-layer self-assembly.

  • PDF