• Title/Summary/Keyword: polymer.

Search Result 16,689, Processing Time 0.045 seconds

Effects of Changes in Accelerated Degradation Conditions for Catalyst Supports in Polymer Electrolyte Fuel Cell (고분자전해질 연료전지(PEMFC)에서 촉매 지지체 가속 열화 조건 변화의 영향)

  • Sohyeong Oh;Yuhan Han;Donggeun Yoo;Myoung Hwan Kim;Ji Young Park;Youngjin Choi;Kwonpil Park
    • Korean Chemical Engineering Research
    • /
    • v.62 no.1
    • /
    • pp.7-12
    • /
    • 2024
  • The durability of the catalyst support has a significant effect on the durability of proton exchange membrane fuel cells (PEMFC). The accelerated durability evaluation of the catalyst support is performed at a high voltage (1.0 to 1.5 V), and the catalyst and ionomer binder in the catalyst layer are also deteriorated, hindering the evaluation of the durability of the support. The existing protocol (DOE protocol) was improved to find conditions in which the support, which is a durability evaluation target, deteriorates further. A protocol (MDOE) was developed in which the relative humidity was lowered by 35% and the number of voltage changes was reduced. After repeating the 1.0 ↔ 1.5 V voltage change cycle, the catalyst mass activitiy (MA), electrochemical active area (ECSA), electrical double layer capacity (DLC), Pt dissolution and particle growth were analyzed. Reaching 40% reduction in mass activity, the MDOE protocol took only 500 cycles, reducing the number of voltage changes compared to the DOE method and increasing the degradation of the carbon support by 50% compared to the DOE protocol.

Effect of PFO/Coal-tar Blending Ratio on Yield and Physical Properties of Pitch-based Activated Carbon (열분해유/콜타르 혼합비가 피치계 활성탄의 수율 및 물성에 미치는 영향)

  • Tae Ung Yoo;Sang Wan Seo;Ji Sun Im;Soo Hong Lee;Woo Jin Song;Seok Chang Kang
    • Applied Chemistry for Engineering
    • /
    • v.35 no.2
    • /
    • pp.107-114
    • /
    • 2024
  • In order to produce high-yield pitch-based activated carbon, pitch was synthesized by blending pyrolysis fuel oil (PFO) and coal-tar. Pitch was synthesized by varying the amount of coal-tar from 0~20% compared to PFO and reacting at 380~420 ℃ for 3 h. The synthesized pitch had a softening point between 80 and 260 ℃, and yields ranged from 10 to 40%. At all synthesis temperatures, as the coal-tar blending ratio increased, the yield increased and the softening point decreased. After considering the selected pitches (softening points: 230~260 ℃), pitches containing coal-tar were more volatile at a low boiling point and had a higher residual carbon content. This is a difference in the composition of coal-tar and PFO, and it was con- firmed that coal-tar has a lot of aromatics and PFO has a lot of aliphatics. The selected pitch was heated to 950 ℃ in a tubular reactor and physically activated with steam for 1 hour. Activated carbon containing coal-tar showed higher yield and microporosity compared to only PFO. In this study, the effect of increasing activated carbon yield by blending pitch raw materials was confirmed, and the physical activation characteristics according to the coal-tar mixing ratio were examined.

Process Optimization for the Industrialization of Transparent Conducting Film (투명 전도막의 산업화를 위한 공정 최적화)

  • Nam, Hyeon-bin;Choi, Yo-seok;Kim, In-su;Kim, Gyung-jun;Park, Seong-su;Lee, Ja Hyun
    • Industry Promotion Research
    • /
    • v.9 no.1
    • /
    • pp.21-29
    • /
    • 2024
  • In the rapidly advancing information society, electronic devices, including smartphones and tablets, are increasingly digitized and equipped with high-performance features such as flexible displays. This study focused on optimizing the manufacturing process for Transparent Conductive Films (TCF) by using the cost-effective conductive polymer PEDOT and transparent substrate PET as alternatives to expensive materials in flexible display technology. The variables considered are production speed (m/min), coating maximum temperature (℃), and PEDOT supply speed (rpm), with surface resistivity (Ω/□) as the response parameter, using Response Surface Methodology (RSM). Optimization results indicate the ideal conditions for production: a speed of 22.16 m/min, coating temperature of 125.28℃, and PEDOT supply at 522.79 rpm. Statistical analysis validates the reliability of the results (F value: 18.37, P-value: < 0.0001, R2: 0.9430). Under optimal conditions, the predicted surface resistivity is 145.75 Ω/□, closely aligned with the experimental value of 142.97 Ω/□. Applying these findings to mass production processes is expected to enhance production yields and decrease defect rates compared to current practices. This research provides valuable insights for the advancement of flexible display manufacturing.

A study on the manufacture of humidity sensors using layered silicate nanocomposite materials (층상 실리케이트계 나노복합 소재 적용 습도센서 제조에 관한 연구)

  • Park, Byoung-Ki
    • Industry Promotion Research
    • /
    • v.9 no.1
    • /
    • pp.31-38
    • /
    • 2024
  • In this study, evaluated the properties of layered silicate-based nanocomposite sensitive film. For the fabrication of nanocomposite materials, we selected organically modified layered silicate materials, specifically Cloisite® and Bentone®, which were treated with quaternary ammonium salts. The impedance of the humidity sensors containing organically modified montmorillonite/hectorite clay decreased with increasing relative humidity(RH%). In the case of the Cloisite® humidity sensor exhibited slightly better impedance linearity and hysteresis compared to the Bentone® 38 humidity sensor. Additionally the impedance of the sensor with Bentone® 38 addition was the lowest when compared to the Cloisite®-modified sensor. Comparing the Cloisite®-modified sensors individually, we observed different moisture absorption characteristics based on the hydrophilic properties of the organic-treated materials. The response speed of Cloisite® 93A tended to be slower due to differences in moisture evaporation rates influenced by the hydrophilic organic components. Based on these results, moisture barriers utilizing organically modified layered silicate materials may exhibit slightly lower moisture absorption properties compared to conventional polymer-based moisture barriers. However, their excellent stability, simple processing, and cost-effectiveness make them suitable for humidity sensor applications.

Investigation of Tensile Properties in Edge Modified Graphene Oxide(E-GO)/Epoxy Nano Composites (측면 치환 그래핀/에폭시 나노복합재료의 인장 특성 평가)

  • Donghyeon Lee;Ga In Cho;Hyung Mi Lim;Mantae Kim;Dong-Jun Kwon
    • Composites Research
    • /
    • v.37 no.3
    • /
    • pp.209-214
    • /
    • 2024
  • Graphene oxide (GO), known for its high stiffness, thermal conductivity, and electrical conductivity, is being utilized as a reinforcement in nanocomposite materials. This study evaluates the mechanical properties of epoxy nanocomposites incorporating GO and edge modified GO (E-GO), which has hydroxyl groups substituted only on its edges. GO/E-GO was uniformly dispersed in epoxy resin using ultrasonic dispersion, and mechanical properties were assessed through tensile testing. The results showed that the addition of nanoparticles increased both tensile strength and toughness. The tensile strength of the epoxy without nanoparticles was 74.4 MPa, while the highest tensile strength of 90.7 MPa was observed with 0.3 wt% E-GO. Additionally, the modulus increased from 2.55 GPa to 3.53 GPa with the addition of nanoparticles. Field emission scanning electron microscopy of the fracture surface revealed that the growth of cracks was impeded by the nanoparticles, preventing complete fracture and causing the cracks to split in multiple directions. E-GO, with surface treatment only on the edges, exhibited higher mechanical properties than GO due to its superior dispersion and surface treatment effects. These results highlight the importance of nanoparticle surface treatment in developing high-performance nanocomposite materials.

An Enhanced Water Solubility and Antioxidant Effects of Seed and Pamace of Schisandra chinensis (Turcz.) Baill Formulation by HME (Hot-Melt Extrusion) (HME (Hot-Melt Extrusion)를 이용한 오미자 씨 및 박의 수용성 및 항산화 효과 향상)

  • Eun Ji Go;Min Ji Kang;Min Jun Kim;Jung Dae Lim;Young-Suk Kim;Jong-Min Lim;Min Jeong Cho;Tae Woo Oh;Seokho Kim;Kyeong Tae Kwak;Byeong Yeob Jeon
    • Herbal Formula Science
    • /
    • v.31 no.4
    • /
    • pp.215-230
    • /
    • 2023
  • Objectives : Schisandra chinensis (Turcz.) Baill contains many nutrients and exhibits high physiological functions. It has been shown that Schisandra seed and pamace contains more nutrients than fruits and thus have higher antioxidant efficacy. In this study, seed and pamace of Schisandra chinensis (Turcz.) Baill (SPSC) were treated with hot-melt extrudate (HME) extrusion to produce water-soluble nanoparticles. Methods : SPSC was treated with HME to prepare nanoparticles. In this process, excipients (hydroxypropyl methylcellulose, pullulan, 2-hydroxylpropyl-beta-cyclodextrin, lecithin) were added to prepare a hydrophilic polymer matrix. To compare and analyze the antioxidant effect and schizandrin content, total flavonoid content, total phenol content and ABTS assay were measured. To confirm the effect of increasing the water solubility of the particles, particle size and water solubility index measurements were performed. The molecular of the material was analyzed using Fourier transform infrared spectroscopy (FT-IR). Results : The particle size of HME extrudates decreased, while total phenols, flavonoids, schizandrin, antioxidant effect, and solubility increased. Through FT-IR, it was confirmed that the SPSC and the extrudate exhibit the same chemical properties. In addition, it was confirmed that when extracted with water, it exhibited a higher antioxidant effect than the ethanol extract. Conclusions : HME technology increased the solubility of SPSC, which are processing by-products, and improved their antioxidant effect to a higher degree. It was confirmed that SPSC could be used as an eco-friendly, high value-added material.

Study of Heating Temperature and Quantification Conditions of Standard Water for Evaluating Hair Water Content (모발 수분 함량 평가를 위한 가열 온도와 기준 수분 정량 조건 연구)

  • Sang-Hun Song;Jangho Joo;Hyun Sub Park;Seong Kil Son;Nae-Gyu Kang
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.50 no.1
    • /
    • pp.11-18
    • /
    • 2024
  • Recently, there have been attempts to claim the hair moisturizing effect for a hair care product, however there has not yet been an official evaluation method because heating temperature for hair has not been established. This study was conducted to establish a quantitative evaluation for hair water content. In order to observe the behavior of water inside hair, heat was applied to hair with various temperatures using thermogravimetric dry residue. As the heating temperature increased, the amount of moisture released from the hair increased. As a result of evaluating hair using a differential scanning calorimeter (DSC), a unique phenomenon in which a rapid endothermic reaction occurs around 75 ℃ was observed. This phenomenon was also observed in different ethnic hair. In hair that damaged the hair cuticle barrier with oxidation and heat, this rapidly rising endothermic reaction temperature occurred at 77 ℃, which was slightly higher, and 73 ℃ was observed when this hair was applied with polar oil, conditioning polymer, or keratin protein. To determine how this reaction affects the hair surface, friction test was performed using an atomic force microscope. When heated above 75 ℃, cuticle friction increased, however when heated above 90 ℃, there was no change in hair cuticle friction. Finally, it was confirmed that around 75 ℃ is the critical temperature at which desorption of water bound to the hair occurs. It is suggested that a heating temperature of 75 ℃ is the optimal temperature for detecting and quantifying the moisture content of hair, and that approximately 10% detected at 75 ℃ can be a standard value for hair moisture content.

Current Status and Management of Nanoplastics Exposed in Environment (환경 중 노출되는 나노플라스틱의 현황 및 관리실태)

  • Ha-neul Park;Jeonggue Park;Younghun Kim
    • Clean Technology
    • /
    • v.30 no.1
    • /
    • pp.1-12
    • /
    • 2024
  • Nanoplastics (NP) exhibit distinct material properties compared to microplastics (MP), necessitating their separate recognition. Review of research outcomes and policy documents on NP reveals that most policy frameworks predominantly define MPs as solid synthetic polymer materials measuring 5 mm or less, but do not distinguish them from NP. However, recent revisions in regulations by the EU classify NPs as particles that range in size from 1 to 1,000 nm, as confirmed by some academic studies. Research on NPs often relies on experimental investigations centered around water systems, with a focus on high-concentration experimental conditions using spherical polystyrene-based NPs in behavior and impact studies. Notably, the environmental behavior characteristics of NP show differences in influence depending on the NP type, emphasizing the need for field simulation research. These challenges are mirrored in Korean society, so it is necessary to redefine NP to be distinct from MP in both research and policy. This study aimed to assess the current state of NP management globally and domestically and highlight policy considerations and issues in the existing response to NP. Upon comprehensive review, it becomes apparent that reaching an international agreement on MP faces methodological limitations, which could potentially burden efforts to precisely define NP size. Therefore, referencing the EU's recent regulatory revisions is crucial in domestic policy. Specific adjustments should commence from the MP concept through insights from the domestic industry, guidance from the academic community, and thorough discussions to ensure social acceptance.

Evaluation of applicability of xanthan gum as eco-friendly additive for EPB shield TBM soil conditioning (친환경 첨가제로서 잔탄검의 토압식 쉴드 TBM 쏘일 컨디셔닝 적용성 평가)

  • Suhyeong Lee;Hangseok Choi;Kibeom Kwon;Byeonghyun Hwang
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.26 no.3
    • /
    • pp.209-222
    • /
    • 2024
  • The Earth Pressure Balance (EPB) shield Tunnel Boring Machine (TBM) is widely used for underground tunnel construction for its advantages, such as eliminating the need for additional facilities compared to the slurry shield TBM, which requires Slurry Treatment Plant (STP). During EPB shield TBM excavation, a soil conditioning technique is employed to enhance the physical properties of the excavated soil by injecting additives, thus broadening the range of applicable ground conditions to EPB shield TBMs. This study explored the use of xanthan gum, a type of biopolymer, as an alternative to the commonly used polymer additive. Biopolymers, derived from biological sources, are fully biodegradable. In contrast to traditional polymers such as polyacrylic acid, which contain environmentally harmful components, xanthan gum is gaining attention as an eco-friendly material due to its minimal toxicity and environmental impact. Test conditions with similar workability were established through slump tests, and the rheological characteristics were assessed using a laboratory pressurized vane shear test apparatus. The experiments demonstrated that, despite exhibiting similar workability, the peak strength in the flow curve decreased with increasing the content of xanthan gum. Consequently, a correlation between the xanthan gum content and peak strength was established. Replacing the traditional polymers with xanthan gum could enable stable EPB shield TBM operation by reducing equipment load, in addition to offering environmental benefits.

Polymeric Additive Influence on the Structure and Gas Separation Performance of High-Molecular-Weight PEO Blend Membranes (고분자량 PEO 기반 분리막에 대한 다양한 고분자 첨가제의 영향 분석)

  • Hyo Jun Min;Young Jae Son;Jong Hak Kim
    • Membrane Journal
    • /
    • v.34 no.3
    • /
    • pp.192-203
    • /
    • 2024
  • The advancement of commercially viable gas separation membranes plays a pivotal role in improving CO2 separation efficiency. High-molecular-weight poly(ethylene oxide) (high-Mw PEO) emerges as a promising option due to its high CO2 solubility, affordability, and robust mechanical attributes. However, the crystalline nature of high-Mw PEO hinders its application in gas separation membranes. This study proposes a straightforward blending approach by incorporating various polymeric additives into high-Mw PEO to address this challenge. Four commercially available, water-soluble polymers, i.e. poly(ethylene glycol) (PEG), poly(propylene glycol) (PPG), poly(acrylic acid) (PAA), and poly(vinyl pyrrolidone) (PVP) are examined as additives to enhance membrane performance by improving miscibility and reducing PEO crystallinity. Contrary to expectations, PEG and PPG fail to inhibit the crystalline structure of PEO and result in membrane flaws. Conversely, PAA and PVP demonstrate greater success in altering the crystal structure of PEO, yielding defect-free membranes. A thorough investigation delves into the correlation between changes in the crystalline structure of high-Mw PEO blend membranes and their gas separation performance. Drawing from our findings and previously documented outcomes, we offer insights into designing and selecting additive polymers for high-Mw PEO, aiming at the creation of cost-effective, commercially viable CO2 separation membranes.