• Title/Summary/Keyword: polymer.

Search Result 16,689, Processing Time 0.042 seconds

The effect of silica composite properties on DLP-stereolithography based 3D printing (실리카 복합소재의 물성에 따른 DLP 3D printing 적용 연구)

  • Lee, Jin-Wook;Nahm, Sahn;Hwang, Kwang-Taek;Kim, Jin-Ho;Kim, Ung-Soo;Han, Kyu-Sung
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.29 no.2
    • /
    • pp.54-60
    • /
    • 2019
  • Recently, various composite materials for additive manufacturing are interested to expand the application field of 3D printing. 3D printing technique was mainly developed using polymer, and ceramic materials for 3D printing are still in the early stage of research due to the requirement of high solid content and post treatment process. In this study, silica particles with various diameters were surface treated with silane coupling agent, and synthesized as silica composite with photopolymer to apply DLP 3D printing process. DLP is an additive manufacturing technology, which has high accuracy and applicability of various composite materials. The rheological behavior of silica composite was analyzed with various solid contents. After DLP 3D printing was performed using silica composites, the printing accuracy of the 3D printed specimen was less than about 3 % to compare with digital data and he bending strength was 34.3 MPa at the solid content of 80 wt%.

Behavior of RC beams strengthened with NSM CFRP strips under flexural repeated loading

  • Fathuldeen, Saja Waleed;Qissab, Musab Aied
    • Structural Engineering and Mechanics
    • /
    • v.70 no.1
    • /
    • pp.67-80
    • /
    • 2019
  • Strengthening with near surface mounted carbon fibre reinforced polymers (NSM-CFRP) is a strengthening technique that have been used for several decades to increase the load carrying capacity of reinforced concrete members. In Iraq, many concrete buildings and bridges were subjected to a wide range of damage as a result of the last war and many other events. Accordingly, there is a progressive increase in the strengthening of concrete structures, bridges in particular, by using CFRP strengthening techniques. Near-surface mounted carbon fibre polymer has been recently proved as a powerful strengthening technique in which the CFRP strips are sufficiently protected against external environmental conditions especially the high-temperature rates in Iraq. However, this technique has not been examined yet under repeated loading conditions such as traffic loads on bridge girders. The main objective of this research was to investigate the effectiveness of NSM-CFRP strips in reinforced concrete beams under repeated loads. Different parameters such as the number of strips, groove size, and two types of bonding materials (epoxy resin and cement-based adhesive) were considered. Fifteen NSM-CFRP strengthened beams were tested under concentrated monotonic and repeated loadings. Three beams were non-strengthened as reference specimens while the remaining were strengthened with NSM-CFRP strips and divided into three groups. Each group comprises two beams tested under monotonic loads and used as control for those tested under repeated loads in the same group. The experimental results are discussed in terms of load-deflection behavior up to failure, ductility factor, cumulative energy absorption, number of cycles to failure, and the mode of failure. The test results proved that strengthening with NSM-CFRP strips increased both the flexural strength and stiffness of the tested beams. An increase in load carrying capacity was obtained in a range of (1.47 to 4.49) times that for the non-strengthened specimens. Also, the increase in total area of CFRPs showed a slight increase in flexural capacity of (1.02) times the value of the control strengthened one tested under repeated loading. Increasing the total area of CFRP strips resulted in a reduction in ductility factor reached to (0.71) while the cumulative energy absorption increased by (1.22) times the values of the strengthened reference specimens tested under repeated loading. Moreover, the replacement of epoxy resin with cement-based adhesive as a bonding material exhibited higher ductility than specimen with epoxy resin tested under monotonic and repeated loading.

Hardness and Rebound Properties of Sprayed Green Soil Produced with Functional Additives for the Application to Steep Slopes (기능성 첨가재를 적용한 급경사면용 녹생토의 경도 및 리바운드 특성)

  • Lee, Byung-Jae;Kim, Hyo-Jung;Kim, Yun-Yung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.12
    • /
    • pp.258-264
    • /
    • 2018
  • In this study, the improved performance of sprayed green soil was evaluated by incorporating functional additives. The optimal mixing ratio of the thickener and super-absorbent polymer, as an additive for moisture supply to the growth of plants within the range of mixing ratios that gives sufficient strength of green soil, was 5% and 1%, respectively. Using Portland cement as a main binder, the pH of the green soil was 9.1. To solve this alkali problem, the mixing proportion was improved so that the pH of the green soil was approximately 7.2 by mixing more than 10% of the chelate resin. The soil conductivity was measured to be 280 ~ 350mS/m under all the mixing conditions. This satisfied the criterion of less than 1000mS/m on the slope surface. As a result of measuring the soil hardness of the green soil prepared under the optimal mixing conditions of functional additives, it satisfied the criteria of 18 ~ 23mm when sprayed under a 1 bar pressure. The rebound rate was less than 15% when spraying green soil on a 75 % slope, and the hardness of the sprayed green soil was more than 18 mm.

Synthesis of Polymer-Silica Hybrid Particle by Using Polyamine Nano Complex (폴리아민 나노 복합체를 이용한 고분자-실리카 복합체 입자 합성)

  • Kim, Dong-Yeong;Seo, Jun-Hee;Lee, Byungjin;Kang, Kyoung-Ku;Lee, Chang-Soo
    • Clean Technology
    • /
    • v.27 no.2
    • /
    • pp.115-123
    • /
    • 2021
  • This study demonstrates a new method for the synthesis of organic-inorganic hybrid particles composed of an inorganic silica shell and organic core particles. The organic core particles are prepared with a uniform size using droplet-based microfluidic technology. In the process of preparing the organic core particles, uniform droplets are generated by independently controlling the flow rates of the dispersed phase containing photocurable resins and the continuous phase. After the generation of droplets in a microfluidic device, the droplets are photo-polymerized as particles by ultraviolet irradiation at the ends of microfluidic channels. The core particle is coated with a nano complex composed of polyallylamine hydrochloride (PAH) and phosphate ion (Pi) through strong non-covalent interactions such as hydrogen bonding and electrostatic interaction under optimized pH conditions. The polyamine nano complex rapidly induces the condensation reaction of silicic acid through the arranged amine groups of the main chain of PAH. Therefore, this method enabled the preparation of organic-inorganic hybrid particles coated with inorganic silica nanoparticles on the organic core. Finally, we demonstrated the synthesis of organic-inorganic hybrid particles in a short time under ambient and environmentally friendly conditions, and this is applicable to the production of organic-inorganic hybrid particles having various sizes and shapes.

Durability Test of PEMFC Membrane by the Combination of Chemical/Mechanical Degradation (화학적/기계적 열화 병행방법에 의한 PEMFC 고분자막 내구성 평가)

  • Lim, Daehyeon;Oh, Sohyeong;Jung, Sunggi;Jeong, Jihong;Park, Kwonpil
    • Korean Chemical Engineering Research
    • /
    • v.59 no.3
    • /
    • pp.339-344
    • /
    • 2021
  • In order to improve the PEMFC (Proton Exchange Membrane Fuel Cell) durability, it is important to accurately evaluate the durability of the membrane in a short time. Recently, DOE (Department of Energy) reported a protocol that combines the chemical and mechanical durability of membranes to evaluate them effectively. This protocol applies chemical/mechanical deterioration to the membrane by repeating wet/dry while OCV (Open Circuit Voltage) holding. The problem of this protocol is that it is highly affected by electrode degradation due to change cycles in OCV and that the evaluation time is long. By using oxygen instead of air as the cathode gas while leaving the other conditions of the DOE protocol as it is, the durability evaluation time could be reduced from 408 hours to 144 hours. By reducing the number of voltage change cycles to 1/3, the electrode degradation due to the voltage change cycle was reduced to 1/12 when oxygen was used compared to air at the end, thereby enabling more accurate evaluation of polymer membrane durability.

Research Trends in Flotation of Waste-plastics and Its Use as Functional Materials (폐플라스틱의 부유선별 및 기능성 소재로의 활용 연구동향)

  • Han, Yosep;Kim, Rina;Hong, Hye-Jin;Park, In-Su;Kim, Dong-Gyun;Kim, Yun Ho;Jeon, Ho-Seok;Chang, Hankwon
    • Resources Recycling
    • /
    • v.29 no.6
    • /
    • pp.15-26
    • /
    • 2020
  • In recent years, there is an increasing interest in environmental friendly treatment of waste-plastics in terms of the generation of microplastics. Accordingly, the recycling of waste-plastics is very important because it provides advantages of volume reduction, mitigation of carbon dioxide emission, and reproduction of value-added products. In particular, in order to recycle the eco-friendly waste-plastics, it is necessary to use a physical separation methods, and among them, flotation separation, which can separate material (i.e., polymer component) in waste-plastics is well known as a very effective separation method in terms of material recycle. Therefore, in this review, the research trend of flotation separation for effective separation of mixture waste-plastics was investigated. In addition, through the reported research results, approaches to use as new functional materials from polymers, which are raw materials for waste-plastics, are summarized.

A Review of Structural Batteries with Carbon Fibers (탄소섬유를 활용한 구조용 배터리 연구 동향)

  • Kwon, Dong-Jun;Nam, Sang Yong
    • Applied Chemistry for Engineering
    • /
    • v.32 no.4
    • /
    • pp.361-370
    • /
    • 2021
  • Carbon fiber reinforced polymer (CFRP) is one of the composite materials, which has a unique property that is lightweight but strong. The CFRPs are widely used in various industries where their unique characteristics are required. In particular, electric and unmanned aerial vehicles critically need lightweight parts and bodies with sufficient mechanical strengths. Vehicles using the battery as a power source should simultaneously meet two requirements that the battery has to be safely protected. The vehicle should be light of increasing the mileage. The CFRP has considered as the one that satisfies the requirements and is widely used as battery housing and other vehicle parts. On the other hand, in the battery area, carbon fibers are intensively tested as battery components such as electrodes and/or current collectors. Furthermore, using carbon fibers as both structure reinforcements and battery components to build a structural battery is intensively investigated in Sweden and the USA. This mini-review encompasses recent research trends that cover the classification of structural batteries in terms of functionality of carbon fibers and issues and efforts in the battery and discusses the prospect of structural batteries.

Effect of Zeolitic Imidazolate Framework-7 in Pebax Mixed Matrix Membrane for CO2/N2 Separation (CO2/N2 분리를 위한 Pebax 혼합막에서 Zeolitic Imidazolate Framework-7의 영향)

  • Yoon, Soong Seok;Hong, Se Ryeong
    • Applied Chemistry for Engineering
    • /
    • v.32 no.4
    • /
    • pp.393-402
    • /
    • 2021
  • In this study, a mixed matrix membrane was prepared by putting the zeolitic imidazolate framework-7 (ZIF-7) synthesized in Pebax-1657 and Pebax-2533, which are representative poly(ether-b-amide), and the permeability properties of single gas such as N2 and CO2 were investigated. From the gas permeation results, in the case of N2, both the Pebax-1657/ZIF-7 and Pebax-2533/ZIF-7 mixed matrix membranes showed a similar phenomenon in which the permeability decreased with the incorporation of ZIF-7. For CO2 permeability, the tendency was slightly different depending on the type of polymer. In the Pebax-1657/ZIF-7 mixed membrane, the CO2 permeability decreased in the range of 0~3 wt% of ZIF-7, and increased at higher contents. The CO2 permeability of the Pebax-2533/ZIF-7 mixed matrix membrane gradually decreased without increasing the permeability in the range of 0~5 wt% of ZIF-7. Regarding CO2/N2 selectivity, both mixed films showed a tendency to increase with increasing the ZIF-7 content. In particular, Pebax-2533/ZIF-7 5 wt% showed the best gas permeation performance compared to other mixed matrix membrane. This is thought to be because ZIF-7 shows better compatibility with Pebax-2533 than that of Pebax-1657 and also better CO2 selective property.

Preparation and Characterization of Polysulfone Membranes Using PVP as an Additive (폴리비닐피롤리돈 첨가제를 이용한 폴리설폰막의 제조 및 특성 분석)

  • Lee, Jin Young;Lee, Kune Woo;Han, Myeong-Jin;Park, So-Jin
    • Applied Chemistry for Engineering
    • /
    • v.22 no.3
    • /
    • pp.277-285
    • /
    • 2011
  • Polysulfone (PSf) membranes were prepared via the phase inversion process. Polyvinylpyrrolidone (PVP) was added as a nonsolvent additive in the casting solution containing a mixture of PSf and n-methylpyrrolidone. The added PVP played a role of enhancing liquid-liquid phase separation of the casting solution, and significantly reduced the solution fluidity. When prepared via the diffusion-induced process using water as a precipitation nonsolvent, the solidified membranes revealed a typical asymmetric structure irrespective of the addition of PVP. With 5 wt% PVP content, the finger-like cavities were more developed in the membrane sublayer compared to that of the membranes prepared without PVP. In contrast, with more than 10 wt% of PVP, the formation of finger-like cavities was suppressed, and the thickness of polymer nodule layer was increased. The surface porosity was also increased with the PSf content in the casting solution. The water permeability curve as a function of PVP addition revealed the inflection point. The maximum water permeability for 12 wt% PSf membrane was obtained with 5 wt% PVP content, and that for 18 wt% PSf membrane with 15 wt% PVP.

Preparation of NH4+-β"-alumina as a Protonic Solid Electrolyte by Ion Exchange Reaction (이온교환반응에 의한 양성자 고체 전해질 NH4+-β"-alumina의 제조)

  • Lee, Jun-Hee;Han, Choon-Soo;Lee, Sung-Tae;Lee, Ki-Moon;Lee, Dae-Han;Lim, Sung-Ki
    • Applied Chemistry for Engineering
    • /
    • v.22 no.3
    • /
    • pp.255-260
    • /
    • 2011
  • $NH_4{^+}-{\beta}^{{\prime}{\prime}}$-alumina which is expected to an inorganic solid electrolyte of high temperature polymer electrolyte membrane fuel cells (PEMFC) was prepared by ion-exchange reaction of $K^{+}-{\beta}^{{\prime}{\prime}}$-alumina pellet with $NH_4NO_3$ aqueous solution and molten $NH_4NO_3$ salts as an ion-exchange medium in the autoclave and the heating mentle reaction. In the autoclave reaction, the concentrations of $NH_4NO_3$ solution was chosen at 5 and 10 M. Each ion-exchange reaction was carried out at 130, 150, 170, and $200^{\circ}C$ for 2, 4, 6 and 8 h. In the heating mentle reaction, ion-exchange was performed at $200^{\circ}C$ for 2, 4, 6 and 8 h with molten $NH_4NO_3$ salts. In order to determine the effect of reaction times, each ion-exchange reaction was repeated 3 times. The phase stability and the ion-exchange rate of $NH_4{^+}-{\beta}^{{\prime}{\prime}}$-alumina were analyzed by XRD and ICP.