• Title/Summary/Keyword: polymer-modified concrete

Search Result 200, Processing Time 0.022 seconds

Physical Properties of Polymer Impregnated Concrete Prepared using Microwave Radiation (Microwave Radiation을 이용하여 제조된 고분자 함침 콘크리트의 물리적 특성)

  • Ku, Du Hyun;Park, Jung Soon;Park, Heon Young;Hur, Myung Jun;Lee, Won Mook
    • Applied Chemistry for Engineering
    • /
    • v.19 no.3
    • /
    • pp.345-350
    • /
    • 2008
  • Polymer Impregnated Concrete (PIC) prepared from Ordinary Portland Cement Concrete (OPC) has excellent mechanical properties as well as physico-chemical properties. For the manufacturing of PIC, drying process of basis concrete (precast concrete), impregnation process with evacuation system and ultrasonic vibration system, polymerization process of monomers are essential. Modified microwave reactor using magnetron was used for polymerization of styrene/MMA (1 : 1) impregnated in pore volume of basis concrete. From the experimental results, the degree of polymerization increased up to 30% and more homogeneous PIC was prepared as compared to the conventional thermal method. Also the mechanical strengths increased more than 400% ($800{\sim}1200kg_f/cm^2$) and the resistance for corrosion to acids was improved up to 25%. AIBN and BPO as initiators for polymerization were used at the concentration less than 1%. Optimum conditions for polymerization were obtained at the frequency of microwave of 400 W and 2450 MHz, and optimum reaction temperature was $120^{\circ}C$ at an atmospheric pressure.

Anchor Design to Prevent Debonding of Repair Mortar in Repaired Concrete Members

  • Choi Dong-Uk;Lee Chin-Yong
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.4 s.88
    • /
    • pp.637-643
    • /
    • 2005
  • Reinforced concrete beams or slabs are often strengthened or repaired using polymer modified cement concrete Stresses can develop in the structure by ambient temperature changes because thermal coefficients of the repair material and the existing concrete are typically different. Especially, shear stress often causes debonding of the interface. In this study, a rational procedure was developed where anchors can be designed in strengthened or repaired concrete members to prevent debonding at the interface. The current design procedure considers thicknesses and elastic moduli of the repair material and existing concrete, ambient temperature change, length, and beam-vs.-slab action. The procedure is also applicable to stresses developed by differential drying shrinkage.

Investigation on Behaviors of Concrete Interfaces Repaired Using Anchors (앵커로 보수한 콘크리트 계면 거동의 고찰)

  • Song Hyung-Soo;Lee Chin-Yong;Yoon Dong-Yong;Min Chang-Shik;Choi Dong-Uk
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.6 s.90
    • /
    • pp.885-892
    • /
    • 2005
  • Recently, the damaged concrete structures are often strengthened or repaired using the polymer concrete or the polymer cement mortar. In the repaired concrete structures at early ages, internal stresses could be developed due to the differential drying shrinkage of the repair material. Due to the difference of the thermal coefficients of the repair material and existing concrete, additional stresses also could be developed as the structures are subjected to the ambient temperature changes. Theses environmentally-induced stresses can sometimes be large enough to cause damage to the structures, such as debonding of the interface between the two materials. In this study, a rational procedure was developed where anchors can be designed and installed to prevent damages in such structures by thermally-induced stresses. Finally, through the experimental study and numerical study, the effects of the repair method using anchors with debonding was investigated and discussed the results.

Pavement Performance Model Development Using Bayesian Algorithm (베이지안 기법을 활용한 공용성 모델개발 연구)

  • Mun, Sungho
    • International Journal of Highway Engineering
    • /
    • v.18 no.1
    • /
    • pp.91-97
    • /
    • 2016
  • PURPOSES : The objective of this paper is to develop a pavement performance model based on the Bayesian algorithm, and compare the measured and predicted performance data. METHODS : In this paper, several pavement types such as SMA (stone mastic asphalt), PSMA (polymer-modified stone mastic asphalt), PMA (polymer-modified asphalt), SBS (styrene-butadiene-styrene) modified asphalt, and DGA (dense-graded asphalt) are modeled in terms of the performance evaluation of pavement structures, using the Bayesian algorithm. RESULTS : From case studies related to the performance model development, the statistical parameters of the mean value and standard deviation can be obtained through the Bayesian algorithm, using the initial performance data of two different pavement cases. Furthermore, an accurate performance model can be developed, based on the comparison between the measured and predicted performance data. CONCLUSIONS : Based on the results of the case studies, it is concluded that the determined coefficients of the nonlinear performance models can be used to accurately predict the long-term performance behaviors of DGA and modified asphalt concrete pavements. In addition, the developed models were evaluated through comparison studies between the initial measurement and prediction data, as well as between the final measurement and prediction data. In the model development, the initial measured data were used.

Effects of Specimen Length on Flexural Compressive Strength of Polymer Concrete (부재의 길이가 폴리머 콘크리트의 휨압축 강도에 미치는 영향)

  • 연규석;김남길;주명기;유근우;권윤환
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.05a
    • /
    • pp.99-104
    • /
    • 2002
  • In this paper the influence or specimen length on flexural compressive strength and parameter or equivalent rectangular stress block of polymer concrete was evaluated. For this purpose, a series of C-shaped specimens subjected to eccentric compression were tested using four different length-to-depth ratios(from 1.0, 2.0, 3.0 and 4.0) of specimens with compressive strength of 1,020kgf/cm$^2$. Results indicate that for the region of h/c$\leq$3.0 the reduction in equivalent rectangular stress block depth and flexural compressive strength with increase of length-to-depth ratios was apparent but for the region of h/c$\geq$3.0 they were nearly constant. It means that for the region of h/c$\geq$3.0 effect of specimen length on equivalent rectangular stress block depth and flexural compressive strength was negligible. It was also founded that the effect of specimen length on v, a coefficient of strength, that was from 0.84 to 0.86 regardless of h/c was petty. Finally, predictive equation is, suggested by using modified law of effect of specimen length and results.

  • PDF

Stress intensity factors for double-edged cracked steel beams strengthened with CFRP plates

  • Wang, Hai-Tao;Wu, Gang;Pan, Yu-Yang;Zakari, Habeeb M.
    • Steel and Composite Structures
    • /
    • v.33 no.5
    • /
    • pp.629-640
    • /
    • 2019
  • This paper presents a theoretical and finite element (FE) study on the stress intensity factors of double-edged cracked steel beams strengthened with carbon fiber reinforced polymer (CFRP) plates. By simplifying the tension flange of the steel beam using a steel plate in tension, the solutions obtained for the stress intensity factors of the double-edged cracked steel plate strengthened with CFRP plates were used to evaluate those of the steel beam specimens. The correction factor α1 was modified based on the transformed section method, and an additional correction factor φ was introduced into the expressions. Three-dimensional FE modeling was conducted to calculate the stress intensity factors. Numerous combinations of the specimen geometry, crack length, CFRP thickness and Young's modulus, adhesive thickness and shear modulus were analyzed. The numerical results were used to investigate the variations in the stress intensity factor and the additional correction factor φ. The proposed expressions are a function of applied stress, crack length, the ratio between the crack length and half the width of the tension flange, the stiffness ratio between the CFRP plate and tension flange, adhesive shear modulus and thickness. Finally, the proposed expressions were verified by comparing the theoretical and numerical results.

Enhancing ductility in carbon fiber reinforced polymer concrete sections: A multi-scale investigation

  • Moab Maidi;Gili Lifshitz Sherzer;Erez Gal
    • Computers and Concrete
    • /
    • v.33 no.4
    • /
    • pp.385-398
    • /
    • 2024
  • As concrete dominates the construction industry, alternatives to traditionally used steel reinforcement are being sought. This study explored the suitability of carbon fiber-reinforced polymer (CFRP) as a substitute within rigid frames, focusing on its impact on section ductility and overall structural durability against seismic events. However, current design guidelines address quasi-static loads, leaving a gap for dynamic or extreme circumstances. Our approach included multiscale simulations, parametric study, and energy dissipation analyses, drawing upon a unique adaptation of modified compression field theory. In our efforts to optimize macro and microparameters to improve yield strength, manage brittleness, and govern failure modes, we also recognized the potential of CFRP's high corrosion resistance. This characteristic of CFRP could significantly reduce the frequency of required repairs, thereby contributing to enhanced durability of the structures. The research reveals that CFRP's durability and seismic resistance are attributed to plastic joints within compressed fibers. Notably, CFRP can impart ductility to structural designs, effectively balancing its inherent brittleness, particularly when integrated with quasi-brittle materials. This research challenges the notion that designing bendable components with carbon fiber reinforcement is impractical. It shows that creating ductile bending components with CFRP in concrete is feasible despite the material's brittleness. This funding overturns conventional assumptions and opens new avenues for using CFRP in structural applications where ductility and resilience are crucial.

Bond Strength Characteristics of Bonded Concrete Overlay (접착식 콘크리트 덧씌우기의 부착강도 특성 분석)

  • Park, Jong Won;Kim, Young Kyu;Lee, Seung Woo;Han, Seung Hwan
    • International Journal of Highway Engineering
    • /
    • v.15 no.4
    • /
    • pp.1-9
    • /
    • 2013
  • PURPOSES : Bonded concrete overlay is a favorable maintenance method since the material properties are similar to existing concrete pavements. In addition, bonded concrete overlay has advantage of structural performance since the overlay layer and the existing pavement perform as a monolithic layer. It is important to have suitable bond strength criteria to secure the performance of bonded concrete overlay. This study aimed to investigate the factors influencing bond strength characteristics between existing concrete pavement and overlay material. METHODS: Bond strength between overlay and existing pavement are measured and analyzed for various conditions such as the type of overlay materials, compressive and flexure strength of overlay and existing pavement, and deterioration status of existing pavement. RESULTS: The strength of overlay material does not significantly influence the bond strength. The overlay of ultra-rapid hardening cement generally gives low bond strength. However, ultra rapid hardening polymer modified concrete gives robust bond strength. The deterioration of existing concrete significantly decrease the bond strength. CONCLUSIONS: Bond strength of bonded concrete overlay highly depends on condition of existing concrete pavement rather than overlay material.