• Title/Summary/Keyword: polymer substrate

Search Result 734, Processing Time 0.026 seconds

AgNW-based functional polymer cantilever to improve maturity and contractility of cardiomyocytes (심근세포 성숙도 및 수축력 향상을 위한 AgNW 기반의 기능성 폴리머 캔틸레버)

  • Jeung, Min-young;Sim, Yu-ri;Yun, Ha-young;Kim, Dong-Su;Lee, Dong-Weon
    • Journal of Sensor Science and Technology
    • /
    • v.30 no.3
    • /
    • pp.185-189
    • /
    • 2021
  • Herein, we propose a functional polymer cantilever to enhance maturation and contractile force of cardiomyocytes. The proposed cantilever consists of a surface-patterned polymer substrate and silver nanowires (AgNWs). The AgNWs are transferred to the PDMS substrate using conventional molding techniques. This thin metallic surface significantly improves the adhesion of cardiomyocyte on the surface-patterned PDMS with the hydrophobic characteristics. In addition, the use of AgNWs improves the visibility of the conducting PDMS substrate for the observation of cardiomyocyte through an inverted microscope. The AgNWs also assist in synchronizing each cardiomyocyte to maximize its contractile force.

Sintering and Consolidation of Silver Nanoparticles Printed on Polyimide Substrate Films

  • Yoon, Sang-Hwa;Lee, Jun-Ho;Lee, Pyoung-Chan;Nam, Jae-Do;Jung, Hyun-Chul;Oh, Yong-Soo;Kim, Tae-Sung;Lee, Young-Kwan
    • Macromolecular Research
    • /
    • v.17 no.8
    • /
    • pp.568-574
    • /
    • 2009
  • We investigated the sintering and consolidation phenomena of silver nanoparticles under various thermal treatment conditions when they were patterned by a contact printing technique on polyimide substrate films. The sintering of metastable silver nanoparticles commenced at 180 $^{\circ}C$, where the point necks were formed at the contact points of the nanoparticles to reduce the overall surface area and the overall surface energy. As the temperature was increased up to 250 $^{\circ}C$, silver atoms diffused from the grain boundaries at the intersections and continued to deposit on the interior surface of the pores, thereby filling up the remaining space. When the consolidation temperature exceeded 270 $^{\circ}C$, the capillary force between the spherical silver particles and polyimide flat surface induced the permanent deformation of the polyimide films, leaving crater-shaped indentation marks. The bonding force between the patterned silver metal and polyimide substrate was greatly increased by the heat treatment temperature and the mechanical interlocking by the metal particle indentation.

Synthesis and Printability of Aqueous Ceramic Ink with Graft Polymer (Graft Polymer를 이용한 수계 세라믹 잉크의 합성 및 프린팅 특성평가)

  • Lee, Ji-Hyeon;Hwang, Hae-Jin;Kim, Jin-Ho;Hwang, Kwang-Taek;Han, Kyu-Sung
    • Korean Journal of Materials Research
    • /
    • v.29 no.10
    • /
    • pp.639-646
    • /
    • 2019
  • Ink-jet printing is a manufacturing process technology that directly prints a digitalized design pattern onto a substrate using a fine ink jetting system. In this study, environmentally friendly yellow aqueous ceramic ink is synthesized by mixture of distilled water, yellow ceramic pigment and additives for ink-jet printing. The graft polymer, which combines electrostatic repulsion and steric hindrance mechanism, is used as a surfactant for dispersion stability of aqueous ceramic ink. Synthesized ceramic ink with graft polymer surfactant shows better dispersion stability than did ceramic ink with PAA surfactant; synthesized ink also shows desirable ink-jet printability with the formation of a single ink droplet during printability test. Finally, ceramic ink printed on glass substrate and ceramic ink with graft polymer surfactant shows a high contact angle without surface treatment on glass substrate. Consequently, it is confirmed that the ceramic ink with graft polymer surfactant can achieve high printing resolution without additional surface treatment process.

Noble LCD with a Single Supporting Substrate

  • Wook, Jung-Jong;Kim, Jae-Hoon
    • Journal of Information Display
    • /
    • v.3 no.4
    • /
    • pp.4-7
    • /
    • 2002
  • A recently developed phase separated composite film method has been employed to fabricate a liquid crystal (LC) based electro-optical device using a single glass substrate. The resulting device is made of adjacent parallel layers of LC and polymer maded by phase separation. The LC layer is confined between the solidified polymer layer on one side and the glass substrate on the other. The electro-optical properties of these devices demonstrate their technological potential in light weight and hand-held electronic products.

Noble LCD with a single supporting substrate

  • Kim, Il;Kim, Jae-Hoon;Agra-Kooijman, Dena M.;Kumar, Satyendra
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2002.08a
    • /
    • pp.463-466
    • /
    • 2002
  • A new type of LCD has been developed using recently developed phase separated composite film method with a single glass substrate. The resultant structures are made of adjacent parallel layers of liquid crystal and polymer. The LC layer is confined between the solidified polymer layer and glass substrate. The electra-optical properties of the display have been investigated. This technique has the potential to realize a lightweight display for hand-held portable electronic products.

  • PDF

Femtosecond laser pattering of ITO film on flexible substrate (펨토초 레이저를 이용한 플렉시블 ITO 패터닝 연구)

  • Sohn, Ik-Bu;Kim, Young-Seop;Noh, Young-Chul
    • Laser Solutions
    • /
    • v.13 no.1
    • /
    • pp.11-15
    • /
    • 2010
  • Indium tin oxide (ITO) provides high electrical conductivity and transparency in the visible and near IR (infrared) wavelengths. Thus, it is widely used as a transparent electrode for the fabrication of liquid crystal displays (LCDs) and organic light emitting diode displays (OLRDs), photovoltaic devices, and other optical applications. Lasers have been used for removing coating on polymer substrate for flexible display and electronic industry. In selective removal of ITO layer, laser wavelength, pulse energy, scan speed, and the repetition rate of pulses determine conditions, which are efficient for removal of ITO coating without affecting properties of the polymer substrate. ITO coating removal with a laser is more environmentally friendly than other conventional etching methods. In this paper, pattering of ITO film from polymer substrates is described. The Yb:KGW femtosecond laser processing system with a pulse duration of 250fs, a wavelength of 1030nm and a repetition rate of 100kHz was used for removing ITO coating in air. We can remove the ITO coating using a scanner system with various pulse energies and scan speeds. We observed that the amount of debris is minimal through an optical and a confocal microscope, and femtosecond laser pulses with 1030nm wavelength are effective to remove ITO coating without the polymer substrate ablation.

  • PDF

Increased Production of Digoxin by Digitoxin Biotransformation Using Cyclodextrin Polymer in Digitalis lanata Cell Cultures

  • Lee, Jong-Eun;Lee, Sang-Yoon;Kim, Dong-Il
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.4 no.1
    • /
    • pp.32-35
    • /
    • 1999
  • Addition of ${\beta}$-cyclodextrin (${\beta}$-CD) polymer during the biotransformation of digitoxin into digoxin using cell suspension cultures of Digitalis lanata enhanced the conversion yield. Digitoxin showed better adsorption to CD polymer compared to digoxin, so that the optimization of addition time was found to be necessary. In the case of adding CD polymer 24 hours after the feeding of substrate digitoxin, the highest digoxin production could be achieved. At this period, digitoxin was almost consumed by cells and productivity was proportionally enhanced according as the amount of substrate was increased. Immobilization of CD polymer did not promote the biotransformation. When 3.33 g/L of CD selective inclusion complex formation could be expected. Adsorption rate was found to be rapid and saturation was obtained within 10 hours of contact.

  • PDF

Evaporative Self-Assembly of Single-Walled Carbon Nanotubes for Field Effect Transistor (용매증발기반 자기조립을 이용한 단일벽 탄소나노튜브 정렬 및 트랜지스터 응용)

  • Kang, Seok Hee;Jeong, Do Young;Eom, Seong Un;Hwang, Cheong Seok;Hong, Suck Won
    • Korean Journal of Materials Research
    • /
    • v.23 no.8
    • /
    • pp.453-461
    • /
    • 2013
  • Controlling the stick and slip motions of the contact lines in a confined geometry comprised of a spherical lens with a flat substrate is useful for manufacturing polymer ring patterns. We used a sphere on a flat geometry, by which we could control the interfaces of the solution, vapor and substrate. By this method, hundreds of concentric ring-pattern formations of a linear conjugated polymer, poly [2-methoxy-5-(2-thylhexyloxy)-1,4-phenylenevinylene] (MEH-PPV), were generated with excellent regularity over large areas after complete solvent evaporation. Subsequently, the MEH-PPV ring patterns played a role as a directed template to organize highly regular concentric rings of single-walled carbon nanotubes(SWCNTs); when a droplet of the SWCNT suspension in water was casted onto the prepared substrate, hydrophobic polymer patterns confined the water dispersed SWCNTs in between the hydrophilicized $SiO_2/Si$ substrate. As the solvent evaporated, SWCNT-rings were formed in between MEH-PPV rings with controlled density. Finally, we used a lift-off process to produce SWCNT patterns by the removal of a sacrificial polymer template with organic solvent. We also fabricated a field effect transistor using self-assembled SWCNT networks on a $SiO_2/Si$ substrate.

Characteristics of PET-PEN Copolymer as a Material for Flexible Substrate (폴리(에틸렌 테레프탈레이트)/폴리(에틸렌 나프탈레이트) 공중합체의 유연기판 특성)

  • Youm, Joo-Sun;Kim, Jea-Hyun;Kang, Ho-Jong
    • Polymer(Korea)
    • /
    • v.35 no.6
    • /
    • pp.599-604
    • /
    • 2011
  • The PET-PEN copolymers have been synthesized and the effect of their morphology on the physical properties of polyester flexible substrate was investigated. It was found that the block sequence of synthesized copolymer was varied depending upon DMT/NDC ratio in polymerization. Higher PET-PEN and PEN block sequence in polyester copolymer resulted in the increase of glass transition temperature and it caused the enhancement of dimensional stability as a polyester flexible substrate. The highest coefficient of thermal expansion(CTE) was obtained when DMT/NDC ratio is 50/50. Synthesized PET-PEN copolymer seems to be acceptable as a flexible substrate since it shows that their optical transmittance at 550 nm is over 80% and thermal weight loss at $280^{\circ}C$ for 1 hr is less than 0.4 wt%.