• Title/Summary/Keyword: polymer sheet

Search Result 327, Processing Time 0.021 seconds

Study of Peel Strength Property of Aluminum/Organic Composite (알루미늄/유기물 복합재료의 Peel 강도 특성에 대한 연구)

  • Kim, Jun-Young;Yoo, Myong-Jae;Kim, Seoung-Taek;Lee, Woo-Sung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.217-218
    • /
    • 2007
  • Aluminum 분말과 고분자를 혼합하여 고분자-금속 복합재료(polymer-metal composite)를 만들어 copper foil과 기판의 접착력을 평가하였다. Tape casting 방법을 이용하여 sheet 만들고 vacuum lamination으로 PCB(Printed Circuit Board)기판을 제조한 후 포토공정으로 peel strength pattern을 형성하였으며, 본 연구에서는 최적의 aluminum 조건을 찾기 위하여 압력, 온도, copper foil의 표면 상태와 silane 표면 코팅에 따른 aluminum-polymer복합재료의 peel strength의 변화를 확인하였다. 최적의 조건은 silane 표면 코팅 처리를 한 aluminum 분말로 $210^{\circ}C$에서 $9.7kg/cm^2$ 압력으로 matte면의 돌기 크기가 크며, 응집이 잘 되어있는 copper foil을 사용하여 13.89N의 우수한 peel strength를 구현 할 수 있었다.

  • PDF

Experimental study of masonry walls strengthened with CFRP

  • Wei, Chang-Qin;Zhou, Xin-Gang;Ye, Lie-Ping
    • Structural Engineering and Mechanics
    • /
    • v.25 no.6
    • /
    • pp.675-690
    • /
    • 2007
  • In order to study the ductility and the lateral load carrying capacity of the masonry walls strengthened with CFRPs (Carbon Fiber Reinforced Polymer sheets), three pieces of masonry walls subjected to cyclic loads with low frequency and vertical load of constant amplitude have been tested. Two different strengthening methods have been used. The strengthening efficiency is affected by the strengthening method. A simplified calculation approach has been introduced based on the experimental test results, and the theoretical results agree reasonably well with the experimental results. It is found that the critical loads, the critical displacements, the ultimate loads, the ultimate displacements and the ductile coefficients of the masonry walls strengthened with CFRPs improve remarkably (6%~57%). Therefore, the masonry structures strengthened with CFRPs are of better ductility and of better lateral load carrying capacity than the masonry structures without any strengthening measurements.

Non-isothermal Effect on the Flow Behavior of Polymer Melts in a Coextrusion Die (고분자의 Coextrusion에서 유동에 대한 비등온 효과)

  • 정인재
    • The Korean Journal of Rheology
    • /
    • v.6 no.2
    • /
    • pp.129-138
    • /
    • 1994
  • 공압출되는 sheet die에서 고분자 물질의 비등온 유동유동을 수치모사하였다. 유변학 적 식으로 power-law model을 사용하였고, 격자생성법을 이용한 유한차분법을 사용하였다. 수치계산을 통해 수축채널에서의 온도 분포를 구해보고 점도가 채널에서의 온도 분포를 구 해 보고 점도가 채널에서의 압력강하 및 신장속도에 미치는 영향을 알아보았다. 압력강하는 외부 유체의 점도 및 heat dissipation의 영향을 크게 받았다. 신장속도는 외부 유체의 점도 가 증가함에 따라 커진 반면 내부 유체의 점도가 증가함에 따라 커진반면, 내부 유체의 점 도증가에 따라 감소하였고, heat dissipation에 의해 증가하였다.

  • PDF

Mechanical and electrical properties of insulating materials at cryogenic temperature (극저온에서의 절연재료의 기계적.전기적 성질)

  • 김상현;마대영;김현희;정순용;김영석
    • Electrical & Electronic Materials
    • /
    • v.9 no.10
    • /
    • pp.1033-1039
    • /
    • 1996
  • Electrical and mechanical properties of polymer sheet at cryogenic temperature have been investigated. Tensile stress(and strain at break) in liquid nitrogen(77K) of 79.7MPa(l.2%) and 117.4MPa(2.05%) are evaluated for films of Polypropylene (PP) and Kapton, respectively. Dielectric loss tangent(tan .delta.) of PP and Kapton films is almost independent of the frequency and tensile stress. Also, field strength of PP film at 77K decreases with increasing the tensile stress.

  • PDF

Study and Fabrication of Transparent Electrode Film by using Thermal-Roll Imprinted Ag Mesh Pattern and Coated Conductive Polymer (열형-롤 각인으로 형성한 Ag 격자 패턴과 전도성 고분자 코팅을 이용한 투명전극 필름 제작에 관한 연구)

  • Yu, Jong-Su;Jo, Jeong-Dai;Yoon, Seong-Man;Kim, Do-Jin
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.9
    • /
    • pp.11-15
    • /
    • 2010
  • In this study, to fabricate a low-resistance and high optical transparency electrode film, the following steps were performed: the design and manufacture of electroforming stamp, the fabrication of a thermal roll-imprinted polycarbonate (PC) patterned films, the filled low-resistance Ag paste using doctor blade process on patterned PC films and spin coating by conductive polymers. As a result of PC films imprinted line width of $26.69{\pm}2\;{\mu}m$, channel length of $247.57{\pm}2\;{\mu}m$, and pattern depth of $7.54{\pm}0.2\;{\mu}m$. Ag paste to fill part of the patterned film with conductive polymer coating and then the following parameters were obtained: a sheet resistance of $11.1\;{\Omega}/sq$ optical transparency values at a wavelength of 550 nm was 80.31 %.

DEHP Migration Behavior from Excessively Plasticized PVC Sheets

  • Kim, Jung-Hwan;Kim, Seong-Hun;Lee, Chang-Hyung;Nah, Jae-Woon;Hahn, Airan
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.3
    • /
    • pp.345-349
    • /
    • 2003
  • The quantity, process and kinetics of di-(2-ethylhexyl)phthalate (DEHP) migration in the 30/70 and 40/60 poly(vinylchloride) (PVC)/DEHP blends were investigated using gas chromatograph. A thin and flexible PVC sheet was soaked in surrounding medium (SM) of water/ethanol mixture and acetonitrile with constant stirring to release DEHP. By observed concentration of DEHP in the SM, it is found that acetonitrile is more intense in DEHP migration than water/ethanol mixture. In addition the amount of extracted DEHP is proportional to the leaching temperature and added ratio of DEHP. The behavior of DEHP migration from flexible PVC sheets was described by the Ficks's law with $2.72-10.1\;{times}\;10^{-10}$ cm²/s of the diffusion coefficients.

Composite Materials with MWCNTs and Conducting Polymer Nanorods and their Application as Supercapacitors

  • Liua, Lichun;Yoo, Sang-Hoon;Park, Sung-Ho
    • Journal of Electrochemical Science and Technology
    • /
    • v.1 no.1
    • /
    • pp.25-30
    • /
    • 2010
  • This study demonstrated the synthesis of high-surface-area metal-free carbonaceous electrodes (CE) from anodic aluminum oxide (AAO) templates, and their application as supercapacitors. Multi-walled Carbon nanotubes (MWCNTs) were interwoven into a porous network sheet that was attached to one side of AAO template through a vacuum filtration of the homogeneously dispersed MWCNT toluene solution. Subsequently, the conducting polymer was electrochemically grown into the porous MWCNT network and nanochannels of AAO, leading to the formation of a carbonaceous metal-free film electrode with a high surface area in the given geometrical surface area. Typical conducting polymers such as polypyrrole (PPY) and poly(3,4-ethylenedioxythiophene) (PEDOT) were examined as model systems, and the resulting electrodes were investigated as supercapacitors (SCs). These SCs exhibited stable, high capacitances, with values as high as 554 F/g, 1.08 F/$cm^2$ for PPY and 237 F/g, 0.98 F/$cm^2$ for PEDOT, that were normalized by both the mass and geometric area.

Structural Performance of Reinforced Concrete Beams Exposed to Freeze-Thawing Environment After Strengthening in Shear with Carbon Fiber-Reinforced Polymer(CFRP) (탄소섬유 폴리머로 전단보강 후 동결융해 환경에 노출된 철근콘크리트 보의 구조성능)

  • Song, Seon-Hwa;Kim, Sun-Woo;Park, Wan-Shin;Choi, Ki-Bong;Yun, Hyun-Do
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.13 no.6 s.58
    • /
    • pp.115-125
    • /
    • 2009
  • In these days, carbon fiber-reinforced polymers (CFRP) have been widely used for retrofitting and/or strengthening structural elements. However, there are not enough test data to predict the long-term performance of the retrofitted structures exposed to freeze-thawing cycles. This paper presents the results of experimental program undertaken to investigate the effects of freeze-thawing cycling (from-18 to $4^{\circ}C) on the behavior and failure characteristics of reinforced concrete (RC) beams strengthened in shear with CFRP sheet and plate using acoustic emission (AE) technique.

Investigation of Properties of the PET Film Dependent on the Biaxial Stretching (PET 필름의 이축연신에 따른 물성변화 연구)

  • Lee, Jung-Gyu;Park, Sang-Ho;Kim, Seong-Hun
    • Polymer(Korea)
    • /
    • v.34 no.6
    • /
    • pp.579-587
    • /
    • 2010
  • To investigate the properties of PET films, PET films were extruded at various temperature above $T_m$ and quenched at $18^{\circ}C$ for amorphous sheet, and stretched along a direction defined as the machine direction (MD) with a transverse direction (TD) above $T_g$ at various stretching ratios and then annealed at various temperatures produced by SKC PET line. Thermal shrinkage of MD and TD increased with decreasing annealing temperature and extruding temperature, and increasing stretching ratio. The degree of crystallinity, density, heat of fusion (${\Delta}H$) and pre-melting point ($T_m'$) increased with increasing annealing temperature and extruding temperature. Number average molecular weight ($M_n$) and intrinsic viscosity decreased with increasing extruding temperature. Tensile strength and modulus increased with increasing stretching ratio, however decreased with increasing annealing temperature. Reflective index of both stretching and thickness direction increased with increasing stretching ratio and annealing temperature.

A study on the design and cooling of the heat sink with hybrid structure of conductive polymer composite and metal (열전도성 고분자 복합소재/금속 소재 하이브리드 구조의 방열기구 설계 및 방열특성에 관한 연구)

  • Yoo, Yeong-Eun;Kim, Duck Jong;Yoon, Jae Sung;Park, Si-Hwan
    • Design & Manufacturing
    • /
    • v.10 no.3
    • /
    • pp.14-19
    • /
    • 2016
  • Thermally or electrically conductive filler reinforced polymer composites are extensively being developed as the demand for light weight material increases rapidly in industiral applications need good conductivity such as heat sink of the electronics or light. Carbon or ceramic materials like graphite, carbon nanotube or boron nitride are typical conductive fillers with good thermal or electical conductivity. Using these conductive fillers, the polymer composites in the market show wide range of thermal conductivity from approximately 1 W/mK to 20 W/mK, which is quite enhanced considering the thermal conductivity lower than 0.5 W/mK for most polymeric materials. The practical use of these composites, however, is yet limited to specific applications because most composites are still not conductive enough or too difficult to process, too brittle, too expensive for higher conductivity. For practical use of conductive composite, the thermal conductivity required depending on the heat releasing mode are studied first for simplified unit cooling geometry to propose thermal conductivities of the composites for reasonable cooling performance comparing with the metal heat sink as a reference. Also, as a practical design for heat sink based on polymer composite, composite and metal sheet hybrid structures are investigated for LED lamp heat sink and audio amplication module housing to find that this hybrid structure can be a good solution considering all of the cooling performance, manufacturing, mechanical performance, cost and weight.