• Title/Summary/Keyword: polymer sheet

Search Result 327, Processing Time 0.027 seconds

High Precision Molding Process for Barrier Ribs of PDP by using a Soft Mold and a Green Sheet

  • Ryu, Seung-Min;Park, Lee-Soon;Yang, Dong-Yol
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.316-319
    • /
    • 2007
  • In this paper, high precision molding process was developed using a soft mold to fabricate fine closed-types of the barrier ribs for PDP. A green sheet was employed to fabricate the barrier ribs in this process. The soft mold with good demolding characteristics was replicated from a master mold. An optimal forming load which would not fracture the soft mold was also determined. The barrier ribs of rectangular type with upper width of $30\;{\mu}m$ would be fabricated by this process.

  • PDF

Time-Dependent Optimal Heater Control Using Finite Difference Method

  • Li, Zhen-Zhe;Heo, Kwang-Su;Choi, Jun-Hoo;Seol, Seoung-Yun
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2254-2255
    • /
    • 2008
  • Thermoforming is one of the most versatile and economical process to produce polymer products. The drawback of thermoforming is difficult to control thickness of final products. Temperature distribution affects the thickness distribution of final products, but temperature difference between surface and center of sheet is difficult to decrease because of low thermal conductivity of ABS material. In order to decrease temperature difference between surface and center, heating profile must be expressed as exponential function form. In this study, Finite Difference Method was used to find out the coefficients of optimal heating profiles. Through investigation, the optimal results using Finite Difference Method show that temperature difference between surface and center of sheet can be remarkably minimized with satisfying Temperature of Forming Window.

  • PDF

Rehabilitation and strengthening of exterior RC beam-column connections using epoxy resin injection and FRP sheet wrapping: Experimental study

  • Marthong, Comingstarful
    • Structural Engineering and Mechanics
    • /
    • v.72 no.6
    • /
    • pp.723-736
    • /
    • 2019
  • The efficacy of a technique for the rehabilitation and strengthening of RC beam-column connections damaged due to cyclic loading was investigated. The repair mainly uses epoxy resin infused under pressure into the damaged region to retrieved back the lost capacity and then strengthening using fiber reinforced polymer (FRP) sheets for capacity enhancement. Three common types of reduced scale RC exterior beam-column connections namely (a) beam-column connection with beam weak in flexure (BWF) (b) beam-column connections with beam weak in shear (BWS) and (c) beam-column connections with column weak in shear (CWS) subjected to reversed cyclic loading were considered for the experimental investigation. The rehabilitated and strengthened specimens were also subjected to similar cyclic displacement. Important parameters related to seismic capacity such as strength, stiffness degradation, energy dissipation, and ductility were evaluated. The rehabilitated connections exhibited equal or better performance and hence the adopted rehabilitation strategies could be considered as satisfactory. Confinement of damaged region using FRP sheet significantly enhanced the seismic capacity of the connections.

Structural behavior of CFRP strengthened concrete-filled steel tubes columns under axial compression loads

  • Park, Jai Woo;Choi, Sung Mo
    • Steel and Composite Structures
    • /
    • v.14 no.5
    • /
    • pp.453-472
    • /
    • 2013
  • This paper presents the structural behavior of CFRP (carbon fiber reinforced polymer) strengthened CFT (concrete-filled steel tubes) columns under axial loads. Circular and square specimens were selected to investigate the retrofitting effects of CFRP sheet on CFT columns. Test parameters are cross section of CFT, D/t (B/t) ratios, and the number of CFRP layers. The load and ductility capacities were evaluated for each specimen. Structural behavior comparisons of circular and rectangular section will be represented in the experimental result discussion section. Finally, ultimate load formula of CFRP strengthened CFT will be proposed to calculate the ultimate strength of CFRP strengthened circular CFT. The prediction values are in good agreement with the test results obtained in this study and in the literature.

Characteristics of Electrospun Ag Nanofibers for Transparent Electrodes (전기방사법으로 제조된 Ag 나노섬유의 투명전극 특성)

  • Hyeon, Jae-Young;Choi, Jung-Mi;Park, Youn-Sun;Kang, Jiehun;Sok, Junghyun
    • Journal of the Korean Vacuum Society
    • /
    • v.22 no.3
    • /
    • pp.156-161
    • /
    • 2013
  • We fabricated transparent conductive electrodes with silver (Ag) nanofibers by electrospinning process. Ag nanofibers have high aspect ratio and fused junctions which result in low sheet resistance. Electrospinning is a fast and efficient process to fabricate continuous one-dimensional (1D) nanofibers. Ag/polymer ink were prepared in polymer matrix solution by a sol-gel method. Then, Ag/polymer nanofibers precursors are heated at $200{\sim}500^{\circ}C$ in air for 2 h to eliminate partially the polymers. The topographical features of the Ag nanofibers were characterized by FE-SEM, and the electrical property was analyzed through I-V measurement system. Finally, optical property was measured using UV/VIS spectroscopy. The transparent conductive electrodes with Ag nanofibers exhibited a sheet resistance (Rs) of $250{\Omega}/sq$ at a transparency (T) of 83%. Transparent conductive films, contain the Ag nanofibers as conductive materials, have good electrical, optical, and mechanical properties. Therefore, it is expected to be useful for the application of flexible display in the future.

Mechanical Properties of High Strength Cement Composite with Carbon Fiber (탄소섬유 보강 고강도 시멘트 복합체의 기게적 특성에 관한 연구)

  • 전용희;한기성
    • Journal of the Korean Ceramic Society
    • /
    • v.30 no.2
    • /
    • pp.139-147
    • /
    • 1993
  • Two sheets of high strength cement paste using ordinary Portland cement and water soluble polymer (polyacrylamide) were made by kneading with a twin roll mill. A carbon fiber layer out between two sheet of the cement paste, and then carbon fiber reinforced high strength cement composites were prepared by pressing them. The mechanical properties of the composites were investigated through the observation of the microstructure and the application of fracture mechanics. When the carbon fiber was added with 0.2 and 0.3wt% to the composites the flexural strength and Young's modulus were about 110∼116MPa and 74∼77GPa respectively, and critical stress intensity was about 3.14MPam1/2. It can be considered that the strength improvement of high strength cement fiber composites may be due to the removal of macropores and the increase of various fracture toughness effects; grain bridging, frictional interlocking, polymer fibril bridging and fiber bridging.

  • PDF

The Characteristics Study on Detector for In-pipe Radioactive Contamination Counting

  • Seo B. K.;Kim G. H.;Jung Y. H.;Woo Z. H.;Oh W. Z.;Lee K. W.;Han M. J.
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2005.11b
    • /
    • pp.269-279
    • /
    • 2005
  • In this study, detectors characteristics for simultaneous counting of alpha and beta ray in a pipe were estimated. The detector were composed of thin ZnS(Ag) scintillator and plastic detector. The scintillator for counting alpha particles has been applied a polymer composite sheet, having a double layer structure of an inorganic scintillator ZnS(Ag) layer adhered onto a polymer sub-layer. The other for counting beta particles used a commercially available plastic scintillator. It was confirmed that the detectors were suitable for counting the in-pipe contamination.

  • PDF

A study on antibacterial Property of padded PE/PP nonwovens with nano-silver colloidal solution (나노 사이즈의 은 콜로이드를 이용한 PE/PP 부직포의 항균성에 관한 연구)

  • Hwang, Yun-Hwan;Jeong, Sung-Hoon
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2003.10b
    • /
    • pp.241-242
    • /
    • 2003
  • Silver has antibacterial property on bacteria of about 650 kinds and has been well known as non-toxic and non-tolerance in natural state. Recently, silver has been applied disinfection and antibacterial property to everyday life as health foods, filter, and exclusion of pollution. Nano-sized silver particle have very small size (〈10nm) and wide surface area per unit volume. PE/PP nonwovens used as back sheet or coverstock of baby diaper, adult diaper, sanitary napkin, and wiper. (omitted)

  • PDF

Transparent Conductive AGZO-PET Film by Roll-to-Roll Sputter and Its Application to Resistive Type Touch Panel Fabrication

  • Lee, Sang-Ju;Lee, Sang-Mun;Lee, Yoon-Su;Kim, Tae-Hoon;Park, Lee-Soon
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.1535-1537
    • /
    • 2009
  • High performance resistive type touch panel was fabricated on flexible polyethylene terephthalate (PET) substrates coated with Al- and Ga-codoped ZnO (AGZO) films. The AGZO films were deposited by roll-to-roll direct current magnetron sputter at room temperature. The AGZO thin films on PET substrates showed high transparency (> 85 % at 550 nm) and low sheet resistance (450 ${\Omega}$/sq.). These values were similar to those of commercial ITO films used for resistive type touch panel.

  • PDF

Experimental Study on Interfacial Behavior of CFRP-bonded Concrete

  • Chu, In-Yeop;Woo, Sang-Kyun;Lee, Yun
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.1 no.1
    • /
    • pp.127-134
    • /
    • 2015
  • Recently, the external bonding of carbon fiber reinforced polymer (CFRP) sheets has come to be regarded as a very effective method for strengthening of reinforced concrete structures. The behavior of CFRP-strengthened RC structure is mainly governed by the interfacial behavior, which represents the stress transfer and relative slip between concrete and the CFRP sheet. In this study, the effects of bonded length, width and concrete strength on the interfacial behavior are verified and a bond-slip model is proposed. The proposed bond-slip model has nonlinear ascending regions and exponential descending regions, facilitated by modifying the conventional bilinear bond-slip model. Finite element analysis results of interface element implemented with bond-slip model have shown good agreement with the experimental results performed in this study. It is found that the failure load and strain distribution predicted by finite element analysis with the proposed bond-slip are in good agreement with results of experiments.