• Title/Summary/Keyword: polymer pattern

Search Result 479, Processing Time 0.028 seconds

Characteristics of BCNU-loaded PLGA Wafers (BCNU를 함유한 생분해성 PLGA 웨이퍼의 특성분석)

  • 안태군;강희정;이진수;성하수;정제교
    • Polymer(Korea)
    • /
    • v.26 no.5
    • /
    • pp.691-700
    • /
    • 2002
  • Interstitial therapy using biodegradable polymeric device loaded with anticancer agent can deliver the drug to the tumor site at high concentration, resulting in an increase of therapeutic efficacy. 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU, carmustine) is most commonly used as chemotherapeutic agent for brain tumors. The design of implantable device is regarded as an important factor lot the efficient delivery of antitumor agent to targeting site. In order to control the release profile of drug, the release pattern of BCNU with the changes of various dimension and additives was investigated. The PLGA wafers containing 3.85, 10, 20 and 30% of BCNU were prepared in various shape (diameter of 3, 5 and 10 mm, thickness of 0.5, 1 and 2 mm) by direct compression method. In vitro drug release profile of BCNU-loaded PLGA wafers could be controlled by changing the dimension of wafers such as initial drug content, weight, diameter, thickness, volume and surface area of wafers, as well as PLGA molecular weight and additives. Drug release from BCNU-loaded PLGA wafers was facilitated with an increase of BCNU-loading amount or presence of poly(N-vinylpyrrolidone)(PVP) or sodium chloride (NaCl). The effects of various geometric factors and additives on the BCNU release pattern were confirmed by the investigation of mass loss and morphology of BCNU-loaded PLGA wafers.

Si-Containing Nanostructures for Energy-Storage, Sub-10 nm Lithography, and Nonvolatile Memory Applications

  • Jeong, Yeon-Sik
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.108-109
    • /
    • 2012
  • This talk will begin with the demonstration of facile synthesis of silicon nanostructures using the magnesiothermic reduction on silica nanostructures prepared via self-assembly, which will be followed by the characterization results of their performance for energy storage. This talk will also report the fabrication and characterization of highly porous, stretchable, and conductive polymer nanocomposites embedded with carbon nanotubes (CNTs) for application in flexible lithium-ion batteries. It will be presented that the porous CNT-embedded PDMS nanocomposites are capable of good electrochemical performance with mechanical flexibility, suggesting these nanocomposites could be outstanding anode candidates for use in flexible lithium-ion batteries. Directed self-assembly (DSA) of block copolymers (BCPs) can generate uniform and periodic patterns within guiding templates, and has been one of the promising nanofabrication methodologies for resolving the resolution limit of optical lithography. BCP self-assembly processing is scalable and of low cost, and is well-suited for integration with existing semiconductor manufacturing techniques. This talk will introduce recent research results (of my research group) on the self-assembly of Si-containing block copolymers for the achievement of sub-10 nm resolution, fast pattern generation, transfer-printing capability onto nonplanar substrates, and device applications for nonvolatile memories. An extraordinarily facile nanofabrication approach that enables sub-10 nm resolutions through the synergic combination of nanotransfer printing (nTP) and DSA of block copolymers is also introduced. This simple printing method can be applied on oxides, metals, polymers, and non-planar substrates without pretreatments. This talk will also report the direct formation of ordered memristor nanostructures on metal and graphene electrodes by the self-assembly of Si-containing BCPs. This approach offers a practical pathway to fabricate high-density resistive memory devices without using high-cost lithography and pattern-transfer processes. Finally, this talk will present a novel approach that can relieve the power consumption issue of phase-change memories by incorporating a thin $SiO_x$ layer formed by BCP self-assembly, which locally blocks the contact between a heater electrode and a phase-change material and reduces the phase-change volume. The writing current decreases by 5 times (corresponding to a power reduction of 1/20) as the occupying area fraction of $SiO_x$ nanostructures varies.

  • PDF

Prototype of Smart Foundation with Heating Devices (발열장치를 이용한 기능성 스마트 파운데이션의 구성 시안)

  • Hwang, Young-Mi;Lee, Jeong-Ran
    • Fashion & Textile Research Journal
    • /
    • v.14 no.4
    • /
    • pp.588-596
    • /
    • 2012
  • This research was intended to design an experimental girdle with thermal insulation function for adult women in their 20s. The design of the experimental girdle was based on the pattern of commercially available girdle. The final pattern of the experimental girdle was established according to the drawing equations determined based on the result of appearance evaluation. The equations were (waist circumference${\times}0.88$)/2 for waist circumference, (hip circumference${\times}0.77$)/2 for hip circumference, and (thigh circumference${\times}0.85$) for thigh circumference. In order to develop a heating device, the most effective fabric heater was adopted based on the experiments about the number of caron fibers, heater size and attachment site. Three heaters-one with a size of $14.5{\times}9.5$ cm, and the other two with the size of $8.0{\times}15.0$ cm-were attached to the areas corresponding to the lower abdomen and the hip, 5 cm below the waist. A heater was developed by connecting these heaters to a controller, 2 batteries (7.4 V 2000 mAh lithium polymer batteries) and a switch (for mode conversion between high/medium/low temperatures). The heater was integrated into the inside of the girdle, so that attachment and detachment were possible without the change of appearance. The tentative configuration plan was proposed for the development of a functional smart girdle with an excellent thermal insulation effect.

Recognition of damage pattern and evolution in CFRP cable with a novel bonding anchorage by acoustic emission

  • Wu, Jingyu;Lan, Chengming;Xian, Guijun;Li, Hui
    • Smart Structures and Systems
    • /
    • v.21 no.4
    • /
    • pp.421-433
    • /
    • 2018
  • Carbon fiber reinforced polymer (CFRP) cable has good mechanical properties and corrosion resistance. However, the anchorage of CFRP cable is a big issue due to the anisotropic property of CFRP material. In this article, a high-efficient bonding anchorage with novel configuration is developed for CFRP cables. The acoustic emission (AE) technique is employed to evaluate the performance of anchorage in the fatigue test and post-fatigue ultimate bearing capacity test. The obtained AE signals are analyzed by using a combination of unsupervised K-means clustering and supervised K-nearest neighbor classification (K-NN) for quantifying the performance of the anchorage and damage evolutions. An AE feature vector (including both frequency and energy characteristics of AE signal) for clustering analysis is proposed and the under-sampling approaches are employed to regress the influence of the imbalanced classes distribution in AE dataset for improving clustering quality. The results indicate that four classes exist in AE dataset, which correspond to the shear deformation of potting compound, matrix cracking, fiber-matrix debonding and fiber fracture in CFRP bars. The AE intensity released by the deformation of potting compound is very slight during the whole loading process and no obvious premature damage observed in CFRP bars aroused by anchorage effect at relative low stress level, indicating the anchorage configuration in this study is reliable.

Development of Tissue mimicking ultrasound phantom materials (Tissue mimicking 초음파 팬텀물질의 개발에 관한 연구)

  • Ma, Sang-Chull;Kong, Young-Kun;Park, Ki-Jung;Lee, Suk
    • Journal of radiological science and technology
    • /
    • v.26 no.1
    • /
    • pp.51-62
    • /
    • 2003
  • We carried out studies on develop of the ultrasound tissue mimicking materials(TMM) by synthesis of polymer urethane(C, CCR, $TiO_2$, tungsten, graphite, silver type). The major finding were as follows; (1) C type TMM was shown good homogeneity, penetration, gray scale like as liver tissue and propagated speed 1,540 m/s, attenuation $0.5{\sim}0.7\;dB/cm/MHz$. (2) $TiO_2$ type TMM was shown heterogeneous dot echo pattern. (3) Silver type TMM was appear good homogeneous echo pattern like as echo texture of thyroid gland. Therefor, C type TMM will be useful for ultrasound Q/A phantom materials and previous phantom materials.

  • PDF

Axial behavior of CFRP wrapped RC columns of different shapes with constant slenderness ratio

  • Narule, Giridhar N.;Bambole, Abhay N.
    • Structural Engineering and Mechanics
    • /
    • v.65 no.6
    • /
    • pp.679-687
    • /
    • 2018
  • In composite materials technology, the fiber-reinforced polymers (FRP) have opened up new horizons in infrastructural engineering field for strengthening existing structures and components of structure. The Carbon fiber reinforced polymer (CFRP) sheets are well suited for RC columns to this application because of their high strength to weight ratio, good fatigue properties and excellent resistance to corrosion. The main focus of present experimental work is to investigate effect of shapes on axial behavior of CFRP wrapped RC columns having same cross-sectional area and slenderness ratio. The CFRP volumetric ratio and percentage of steel are also adopted constant for all the test specimens. A total of 18 RC columns with slenderness ratio four were cast. Nine columns were control and the rest of nine columns were strengthened with one layer of CFRP wrap having 35 mm of corner radius. Columns confined with CFRP wrap were designed using IS: 456:2000 and ACI 440.2R.08 provisions. All the test specimens were loaded for axial compression up to failure and failure pattern for each shaped column was investigated. All the experimental results were compared with analytical values calculated as per the ACI-440.2R-08 code. The test results clearly demonstrated that the axial behavior of CFRP confined RC columns is affected with the change in shapes. The axial deformation is higher in CFRP wrapped RC circular column as compared to square and rectangular columns. Stress-strain behaviour revealed that the yield strength gained from CFRP confinement was significant for circular columns as compare to square and rectangular columns. This behaviour may be credited due to effect of shape on lateral deformation in case of CFRP wrapped circular columns at effective confinement action.

Novel Low-Volume Solder-on-Pad Process for Fine Pitch Cu Pillar Bump Interconnection

  • Bae, Hyun-Cheol;Lee, Haksun;Eom, Yong-Sung;Choi, Kwang-Seong
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.22 no.2
    • /
    • pp.55-59
    • /
    • 2015
  • Novel low-volume solder-on-pad (SoP) process is proposed for a fine pitch Cu pillar bump interconnection. A novel solder bumping material (SBM) has been developed for the $60{\mu}m$ pitch SoP using screen printing process. SBM, which is composed of ternary Sn-3.0Ag-0.5Cu (SAC305) solder powder and a polymer resin, is a paste material to perform a fine-pitch SoP in place of the electroplating process. By optimizing the volumetric ratio of the resin, deoxidizing agent, and SAC305 solder powder; the oxide layers on the solder powder and Cu pads are successfully removed during the bumping process without additional treatment or equipment. The Si chip and substrate with daisy-chain pattern are fabricated to develop the fine pitch SoP process and evaluate the fine-pitch interconnection. The fabricated Si substrate has 6724 under bump metallization (UBM) with a $45{\mu}m$ diameter and $60{\mu}m$ pitch. The Si chip with Cu pillar bump is flip chip bonded with the SoP formed substrate using an underfill material with fluxing features. Using the fluxing underfill material is advantageous since it eliminates the flux cleaning process and capillary flow process of underfill. The optimized interconnection process has been validated by the electrical characterization of the daisy-chain pattern. This work is the first report on a successful operation of a fine-pitch SoP and micro bump interconnection using a screen printing process.

Polymeric Waveguide Bio Sensors with Bragg Gratings (브래그 격자 광도파로형 바이오 센서)

  • Lee, Jae-Hyun;Kim, Gyeong-Jo;Oh, Min-Choel
    • Korean Journal of Optics and Photonics
    • /
    • v.17 no.1
    • /
    • pp.54-59
    • /
    • 2006
  • Biophotonic sensors based on polymer waveguide with Bragg reflection grating are demonstrated in this work. Waveguide Bragg reflectors were designed by using the effective index method and the transmission matrix method. The grating pattern was formed by exposing the laser interference pattern on a photoresist. On top of the inverted rib waveguide, the Bragg reflection grating was inscribed by the O2 plasma etching. In order to perform the bio-molecule detection experiment, a calixarene molecule was self-assembled on top of thin Au film deposited on the waveguide Bragg reflector. To measure the response of the sensor, several PBS solutions with different concentrations of potassium ion from 1 pM to $100\;{\mu}M$ were dropped on the sensor surface. The shift of Bragg reflection wavelength was observed from the fabricated sensor device, which was proportional to the concentration of potassium ion ranging from 1 pM to 108 pM.

A Study on Color Reliability of New Combat Uniform Fabrics through Quantitative Analysis of the Color and Color Fastness to Washing (색상 및 세탁견뢰도의 정량적 분석을 통한 신형 전투복 원단의 색상신뢰성 연구)

  • Hong, Seong-don;Kim, Byung-Soon;Jang, Yeonju;Lee, Jung Soon
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.40 no.3
    • /
    • pp.456-464
    • /
    • 2016
  • A new combat uniform is improved for added combat safety with various functions such as survivability, battle conformity and a camouflage performance system. Camouflage performance is an important factor in terms of combat survivability since it makes identification difficult and provide security. The combat uniform is worn under extreme conditions (exposure to ultraviolet light, sweat and friction) and an excellent color fastness to repeated washing is required. In this study, we investigated the color management, durability and discoloration of new combat uniform fabric with a digital pattern for camouflage performance to provide preliminary color management data. We examined color differences between standard fabric and mass-produced combat uniform fabrics, color differences between each military supply contract firm and color changes in combat uniforms after 60 washing cycles. The slight color differences between standard fabric and mass-produced combat uniform fabrics were tolerable under quality criteria of Republic of Korea Ministry of National Defense. However, the differences between the military supply contract firms were recognizable to the naked eye and increased with repeated washing. Continuous research on color fastness under repeated washing and color management is required to standardize reliability from each military supply contract firm for the daytime performance of a combat uniform's camouflage.

A Study on the AC Treeing Characteristics with Tip Radius of Needle Electrode in LLDPE/EVA (침전극 곡률반경에 따른 LLDPE/EVA의 교류트리 특성)

  • Lee, Jae-Pil;Lee, Chung-Ho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07a
    • /
    • pp.476-480
    • /
    • 2003
  • Polyethylene used as insulating material of power cable is nonpolar and low dielectric loss polymer. But it has defects of tree generation and accumulation of space charge by an applied voltage resulting in the decreased life and performance. To solve these problems, mixed films with LLDPE and EVA that is similar to LLDPE at physical properties in case of low VA contents were made and tested due to the blend ratios of 80:20, 70:30, 60:40 and 50:50[wt%] respectively. We investigated AC electrical treeing characteristics to acquire the best mixture ratio and effect of the tip radius of needle electrode to develop excellent treeproof materials. The degree of crystallity calculated with XRD pattern is higher for pure LLDPE, 50:50 and 70:30. For DSC analysis, it is confirmed that the melting points of mixed specimens are lower than that of pure LLDPE and higher than pure EVA's. The shape of tree propagation showed that pure EVA was electrical tree shape of the branch type, pure LLDPE and blended specimens was able to confirm tree shape of the bush type. As the tip radius go up in the blend ratio 70:30 specimen, the tree inception voltage rise. Probably the reason is the relaxation of electric field in the specimen with bigger tip ratio. As the 6 specimens were applied AC 5[KV],7.5[KV],10[KV] respectively, tree growth length is far shorter in the specimen with blend ratio 70:30, 50:50 than in pure EVA and pure LLDPE specimen. Conclusively, it is confirmed that specimens of which blend ratio are 70:30 and 50:50 are good in electrical tree retardant characteristics, especially, 70:30 has lower dielectric loss than 50:50 and its mixture ratio is the best.

  • PDF