• Title/Summary/Keyword: polymer pattern

Search Result 478, Processing Time 0.031 seconds

A Correlation Between Crack Growth and Abrasion for Selected Rubber Compounds

  • Lee, Hyunsang;Wang, Wonseok;Shin, Beomsu;Kang, Seong Lak;Gupta, Kailash Chandra;Nah, Changwoon
    • Elastomers and Composites
    • /
    • v.54 no.4
    • /
    • pp.313-320
    • /
    • 2019
  • A typical wear pattern was reported to resemble the fatigue crack growth behavior considering its mechanism, especially for amorphous rubbers such as styrene-butadiene rubber (SBR). In this study, the wear and crack growth rates were correlated using two separate experiments for carbon black and silica-reinforced selected rubber compounds. The wear rate was determined using a blade-type abrasion tester, where the frictional energy input during wearing was measured. The crack propagation rate was determined under different tearing energy inputs using a home-made fatigue tester, with a pure-shear test specimen containing pre-cracks. The rates of abrasion and crack propagation were plotted on a log-log scale as a function of frictional and tearing energies, respectively. Reasonable agreement was observed, indicating that the major mechanism of the abrasion pattern involved repeated crack propagation.

An Experimental Study on Friction Reduction in Journal Bearings (저어널 베어링에서의 마찰감소현상에 대한 실험적 연구)

  • 이득우;김경웅
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.10 no.3
    • /
    • pp.298-304
    • /
    • 1986
  • The friction reduction by dilute polymer solutions was investigated experimentally in journal bearings. Flow pattern visualization and torque measurements were performed for a concentric case (.epsilon.=0). The effects of polymer concentration, bearing clearance, and polymer molecular weight on friction reduction were examined. The frictional torque and the intensity of vortices of the case of polymer solution were reduced compared with those of base oil only.

Finite Element Analysis of the Room Temperature Nanoimprint Lithography Process with Rate-Dependent Plasticity (변형률속도를 고려한 상온 나노임프린트 공정의 유한요소해석)

  • Song J. H.;Kim S. H.;Hahn H. Thomas;Huh H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.10a
    • /
    • pp.63-66
    • /
    • 2005
  • Nanoimprint lithography (NIL) process at room temperature has been newly proposed in recent years to overcome the shape accuracy and sticking problem induced in a conventional NIL process. Success of the room temperature NIL relies on the accurate understand of the mechanical behavior of the polymer. Since a conventional NIL process has to heat a polymer above the glass transition temperature to deform the physical shape of the polymer with a mold pattern, viscoelastic property of polymer have major effect on the NIL process. However, rate dependent behavior of polymer is important in the room temperature NIL process because a mold with engraved patterns is rapidly pressed onto a substrate coated with the polymer by the hydraulic equipment. In this paper, finite element analysis of the room temperature NIL process is performed with considering the strain rate dependent behavior of the polymer. The analyses with the variation of imprinting speed and imprinting pattern are carried out in order to investigate the effect of such process parameters on the room temperature NIL process. The analyses results show that the deformed shape and imprint force is quite different with the variation of punch speed because the dynamic behavior of the polymer is considered with the rate dependent plasticity model. The results provide a guideline for the determination of process conditions in the room temperature NIL process.

  • PDF

Evaluation of Inhomogeneous Deformation and Stress Concentration In Polymer Composites Injection Weld by means of Thermoelastic Techniques

  • Lim, Jae-Kyoo;Kim, Yon-Jig
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.12
    • /
    • pp.1616-1622
    • /
    • 2001
  • Fiber composite materials are widely used in aerospace industries due to their high specific strength and stiffness. Especially, the increasing use of polymer composite materials for injection of automobile components has led to a considerable interest in the application of stress pattern analysis by thermal emission to these composite materials. Therefore, in this study the microstructure of glass fiber orientation at the parent and weld line of polycarbonate is observed by a light transmission. And we also investigate a stress concentration model of a notch including short glass fibers. Especially the polymer injection weld reorients the fiber to suggest a new method for the evaluation of inhomogeneous deformation.

  • PDF

Manufacture of arrester module using braided composite materials (브레이드 복합재료를 이용한 피뢰기 모듈 제조에 관한 연구)

  • Han, D.H.;Cho, H.G.;Han, S.W.;Park, K.H.
    • Proceedings of the KIEE Conference
    • /
    • 2002.07c
    • /
    • pp.1467-1469
    • /
    • 2002
  • This paper aims to investigate the characteristics of braided thermoplastic and thermosetting composite and pressure relief for polymer arrester. In general, braided composite has potential for improved impact and delamination resistance. Manufacturing processes of the braided composite could also be automated and could potentially lead to lower costs. Therefore, in consideration of characteristics of pressure relief for polymer arrester, the fabric pattern of braided composite was studied. And polymer arrester module was manufactured with braid.

  • PDF

Molecular Dynamics Study on the Effect of Process Parameters on Nanoimprint Lithography Process (공정인자들이 나노임프린트 리소그래피 공정에 미치는 영향에 대한 분자동역학 연구)

  • Kang, Ji-Hoon;Kim, Kwang-Seop;Kim, Kyung-Woong
    • Tribology and Lubricants
    • /
    • v.22 no.5
    • /
    • pp.243-251
    • /
    • 2006
  • Molecular dynamics simulations of nanoimprint lithography NIL) are performed in order to investigate effects of process parameters, such as stamp shape, imprinting temperature and adhesive energy, on nanoimprint lithography process and pattern transfer. The simulation model consists of an amorphous $SiO_{2}$ stamp with line pattern, an amorphous poly-(methylmethacrylate) (PMMA) film and an Si substrate under periodic boundary condition in horizontal direction to represent a real NIL process imprinting long line patterns. The pattern transfer behavior and its related phenomena are investigated by analyzing polymer deformation characteristics, stress distribution and imprinting force. In addition, their dependency on the process parameters are also discussed by varying stamp pattern shapes, adhesive energy between stamp and polymer film, and imprinting temperature. Simulation results indicate that triangular pattern has advantages of low imprinting force, small elastic recovery after separation, and low pattern failure. Adhesive energy between surface is found to be critical to successful pattern transfer without pattern failure. Finally, high imprinting temperature above glass transition temperature reduces the imprinting force.

Physico-mechanical, AC-conductivity and microstructural properties of FeCl3 doped HPMC polymer films

  • Prakash, Y.;Somashekarappa, H.;Manjunath, A.;Mahadevaiah, Mahadevaiah;Somashekar, R.
    • Advances in materials Research
    • /
    • v.2 no.1
    • /
    • pp.37-49
    • /
    • 2013
  • The transition metal salt doped solid polymer electrolyte [TSPE] were prepared with HPMC as a host polymer. The virgin and doped films were prepared by solution-casting method and investigated using wide angle X-ray scattering method. Micro structural parameters like lattice strain (g%), stacking/twin faults, the average number of unit cells counted in a direction perpendicular to the Bragg's plane (hkl) spacing of (hkl) planes dhkl, crystallite size Ds, distortion width, standard deviation were determined by whole pattern powder fitting (WPPF) method, which is an extension of single order method. It is found that the crystallite size decreases with the increase in the content of $FeCl_3$. This decrease is due to increase in localized breaking of polymer network which also accounts for the amorphous nature of the material. The filler inorganic salt $FeCl_3$ acts as plasticizer. FTIR study also confirms and justifies the interaction between the polymer and in-organic salt in the matrix. Physical properties like mechanical stability and Ac conductivity in these films are in conformity with the X-ray results.

Effect of polymer substrates on nano scale hot embossing (나노 사이즈 hot embossing 공정시 폴리머의 영향)

  • Lee, Jin-Hyung;Kim, Yang-sun;Park, Jin-goo
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2003.11a
    • /
    • pp.71-71
    • /
    • 2003
  • Hot embossing has been widely accepted as an alternative to photolithography in generating patterns on polymeric substrates. The optimization of embossing process should be accomplished based on polymer substrate materials. In this paper, the effect of polymer substrates on nano scale hot embossing process was studied. Silicon molds with nano size patterns were fabricated by e-beam direct writing. Molds were coated with self-assembled monolayer (SAM) of (1, 1, 2.2H -perfluorooctyl)-trichlorosilane to reduce the stiction between mold and substrates. For an embossing, pressure of 55, 75 bur, embossing time of 5 min and temperature of above transition temperature were peformed. Polymethylmethacrylates (PMMA) with different molecular weights of 450,000 and 950,000, MR-I 8010 polymer (Micro Resist Technology) and polyaliphatic imide copolymer were applied for hot embossing process development in nano size. These polymers were spun coated on the Si wafer with the thickness between 150 and 200 nm. The nano size patterns obtained after hot embossing were observed and compared based on the polymer properties by scanning electron microscopy (SEM). The imprinting uniformity dependent on the Pattern density and size was investigated. Four polymers have been evaluated for the nanoimprint By optimizing the process parameters, the four polymers lead to uniform imprint and good pattern profiles. A reduction in the friction for smooth surfaces during demoulding is possible by polymer selection.

  • PDF

Morphological Study by TEM on Electrospun Nanofibers of polydioxanone

  • Nakayama, Atsushi;Kawahara, Yutaka;Tsuji, Masaki
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.299-299
    • /
    • 2006
  • Polydioxanone nanofibers for TEM observation can be produced. To collect parallelly aligned nanofibers can crystallize them partially. The SAED pattern of nanofibers drawn and/or heat-treated shows a well-developed fiber pattern, and in the patterns we can observe crystalline reflections up to third layer line.

  • PDF