• Title/Summary/Keyword: polymer pattern

Search Result 478, Processing Time 0.032 seconds

Response Characteristics of Organic Gas for Polymer Coating Materials (고분자 감응성막의 유기가스 반응 특성)

  • 김정명;유승엽;장정수;권영수
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1995.11a
    • /
    • pp.273-276
    • /
    • 1995
  • In this paper, the response characteristics of organic gases were investigated by using quartz crystal microbalance(Q.C.M) with different coating materials. The method for pattern was discussed in order to develope gas sensing system using neural network and pattern recognition. we analyzed the response characteristics by the area of frequency shift, which mean affinities of gases for coating material. The results shows that the Parameter made by the area of frequency shift has possibility to be used for pattern recognition and neural network. we found that each gas had different decrease pattern for coating material.

  • PDF

Finite Element Analysis of Nano Deformation for Hyper-fine Pattern Fabrication by Application of Nanoidentation Process (II) (나노인덴테이션 공정을 이용하여 극미세 패턴을 제작하기 위한 나노변형의 유한요소해석(II))

  • 이정우;윤성원;강충길
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.9
    • /
    • pp.47-54
    • /
    • 2003
  • In this study, to achieve the optimal conditions for mechanical hyper-fine pattern fabrication process, deformation behavior of the materials during indentation was studied with numerical method by ABAQUS S/W. Polymer (PMMA) and brittle materials (Si, Pyrex glass) were used as specimens, and forming conditions to reduce the elastic re cover and pile-up were proposed. The indenter was modeled a rigid surface. Minimum mesh sizes of specimens are 1 -l0nm. Comparison between the experimental data and numerical result demonstrated that the finite element approach is capable of reproducing the loading-unloading behavior of a nanoindentation test. The result of the investigation will be applied to the fabrication of the hyper-fine pattern.

Fundamental Study on Deformation Behavior of the Nano Structure for Application to the Hyper-fine Pattern and Mold Fabrication (극미세 Mold 및 패턴 제작물 위한 나노변형의 기초연구)

  • 이정우;윤성원;강충길
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.333-336
    • /
    • 2002
  • In this study, to achieve the optimal conditions for mechanical hyper-fine pattern fabrication process, deformation behavior of the materials during indentation was studied with numberical method by ABAQUS S/W. Polymer (PMMA) and brittle materials (Si, Pyrex glass) were used as specimens, and forming conditions to reduce the elastic restoration and bur was proposed. The indenter was modeled a rigid surface. Minimum mesh sizes of specimens are 1-l0nm. The result of the investigation will be applied to the fabrication of the hyper-fine pattern and mold.

  • PDF

Electric Circuit Fabrication Technology using Conductive Ink and Direct Printing

  • Jeong, Jae-U;Kim, Yong-Sik;Yun, Gwan-Su
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2009.05a
    • /
    • pp.12.1-12.1
    • /
    • 2009
  • For the micro conductive line, memory device fabrication process use many expensive processes such as manufactur-ing of photo mask, coating of photo resist, exposure, development, and etching. However, direct printing technology has the merits about simple and cost effective processes because nano-metal particles contained inks are directly injective without mask. And also, this technology has the advantage about fabrication of fine pattern line on various substrates such as FPCB, PCB, glass, polymer and so on. In this work, we have fabricated the fine and thick metal pattern line on flexible PCB substrate for the next generation electronic circuit using Ag nano-particles contained ink. To improve the line tolerance on flexible PCB, metal lines are fabricated by sequential prinitng method. Sequential printing method has vari-ous merits about fine, thick and high resolution pattern lines without bulge.

  • PDF

Morphology of Styetched Poly(ethylene terephthalate)/ Poly(m-xylene adipamide) Blends (연신된 폴리(에틸렌 테레프탈레이트)/ 폴리(메타-자이렌 아디프아미드) 블렌드의 형태구조)

  • 남주영;박수현;이광희;정지원;박동화
    • Polymer(Korea)
    • /
    • v.27 no.4
    • /
    • pp.313-322
    • /
    • 2003
  • The morphology of poly(ethylene terephthalate) (PET)/poly(m-xylene adipamide) (MXD-6) blends, which was prepared by adding compatibilizer and interchange reaction agent, was investigated. The morphological change in the stretched blend films was also studied. The stretched film showed a dispersed MXD-6 fibril. This fibril became finer with increasing draw ratio (DR). The addition of compatibilizer and interchange reaction agent had no effect on the improvement of interfacial adhesion but caused a defect between the continuous phase and the dispersed phase, leading to the formation of irregular fibril. The change in the superstructure of blends with composition and draw ratio was examined with light scattering (LS). The H$\sub$v/ LS patterns showed a double-cross type pattern consisting of a broad rod-like pattern and a sharp cross streak. On the basis of the model calculation of the H$\sub$v/ pattern, it was found that the appearance of the double-cross type pattern was attributed to the stacking of crystals oriented along the draw direction. The crystals were gradually oriented to the stretching direction with draw ratio. As a result, the high level of orientation was obtained fur the sample of draw ratio is 6.0.

The Trypsin Inhibitor Activity and Protein Pattern of the Soybean During Germination (대두발아(大豆發芽)에 따른 Trypsin Inhibitor Activity와 Protein Pattern의 변화(變化))

  • Son, Hye-Sook;Park, Jyung-Rewng;Lee, Sung-Woo
    • Applied Biological Chemistry
    • /
    • v.20 no.2
    • /
    • pp.182-187
    • /
    • 1977
  • This investigation was to determine the changes in the trypsin inhibitor activity(TIA) and electrophoresis patterns of the soybean cotyledon and axis during germination. The TIA of the cotyledon decreased slightly and that of the axis decreased rapidly to 50% activivity after 7 day germination. At the 2nd, 3rd and 4th day's germination the TIA of the defatted dry axis was higher than that of cotyledon. However, the TIA of the fresh cotyledon was lower than that of the axis, due to its higher moisture content. Results from the electrophoretic studies showed that band 1 (polymer, 15S etc.), 2(11S), and 3(7S) whichare the major reserve proteins of soybean were decreased consid erably in cotyledon and axis and the fragments with Rm values between 0.5 and 1.0 were increased and band 5 showed up during germination. The band 4 of the cotyledon and band 6 of axis were not changed during germination. Generally speaking, the TIA and thereserve protein decreased as germination proceed.

  • PDF

Studies on the Electrical Properties and Pattern Fabrication of Conjugated Self-Assembled Monolayer by Deep UV Light (원자외선에 의한 공액구조 자기조립 단분자막의 패턴 제작 및 전기적 특성)

  • Oh Se Young;Choi Hyung Seok;Kim Hee Jeong;Park Je Kyun
    • Polymer(Korea)
    • /
    • v.29 no.4
    • /
    • pp.331-337
    • /
    • 2005
  • In general, alkanethiolates having carboxylic acid in the tail group have been used as biorecepton. In this study, we have immobilized a cytochrome c protein using conjugated aromaticthiolates in order to improve the electrical property and physical stability of alkanethilolates. The pattern formation of self-assembled aromaticthiolate monolayers was as follow. Aromatic thiolates bound on the gold surface by the adsorption of 4'-mercapto-biphenyl-4-carboxylic acid and 4-mercapto-[1,1';4',1']terphenyl-4'-carboxylic acid were oxidized by the irradiation of deep UV light through a negative mask. The negative type pattern of the self-assembled monolayer (SAM) was obtained by developing with a deionized water. The pattern formation and electrical conductivity of aromaticthiolate SAMs was investigated by the measurements of STM and AFM. In addition, cytochrome c or ferrocene amide was immobilized onto the patterned substrate. We also studied on the effect of conjugated aromatic thiolates on the electrical activity of cytochrome c or ferrocene amide by cyclic voltammetry.

The Chacteristics of Resonant Resistance Change of the Piezoelectric Quartz Crystal Depending on the Polymer Polarity (고분자의 극성에 따른 수정진동자 공진저항의 변화 특성)

  • Park, Ji Sun;Park, Jung Jin;Lee, Sang Rok;Chang, Sang Mok;Kim, Jong Min
    • Applied Chemistry for Engineering
    • /
    • v.18 no.1
    • /
    • pp.71-76
    • /
    • 2007
  • We have demonstrated the resonant resistance pattern changes of the polymer film in the quartz crystal analysis by the function of the molecular polarity phase transition phenomena. PVA and PMMA/PVAc blend films were used as hydrophilic and/or hydrophbic film, respectively. In the comparison between the hydrophilic shows the pattern changes near by the phase transition temperature. For more detailed explanation, the static capacity in the oscillation parameter was measured and the morphology of Au quartz crystal electrode was studied by AFM. It is suggested that the different resonant resistance pattern change is reliable in the condition of different polarity, and the conclusion is important to analysis of the real mechanism a normal quartz crystal experiments.

Analysis of Aroma patterns of Nagaimo, Ichoimo and Tsukuneimo by the Electronic Nose (전자코에 의한 장마, 단마, 대화마의 향기패턴 분석)

  • Lee, Boo-Yong;Yang, Young-Min
    • Korean Journal of Food Science and Technology
    • /
    • v.33 no.1
    • /
    • pp.24-27
    • /
    • 2001
  • This study was performed to analyse aroma patterns of Nagaimo, Ichoimo and Tsukuneimo by the electronic nose with 32 conducting polymer sensors. Response by the electronic nose was analysed by the principal component analysis(PCA). Sensory evaluation also for organoleptic taste and odor of Nagaimo, Ichoimo and Tsukuneimo was performed. Nagaimo was very crunchy and sweet. Tsukuneimo was roasted nutty, hard, viscid taste and sticky. Ichoimo had intensive unique yam flavor and moderate hardness between Nagaimo and Ichoimo. Intensity of Ichoimo for unique yam flavor by the electronic nose was the strongest. The quality factor(QF) of PCA for normalized pattern by thirty two sensors showed less than 2, and so aroma pattern of three yam cultivars had no difference. But when the PCA was performed for normalized pattern by eight selected sensitive sensors, the QF for Nagaimo and Tsukuneimo is 2.057. Thus aroma pattern between Nagaimo and Tsukuneimo could be distinguished.

  • PDF

A Study on the Plate-Type Polymer Hyperfine Pit Structure Fabrication and Mechanical Properties Measurement by Using Thermal-Nanoindentation Process (열간나노압입공정을 이용한 극미세 점구조체 제작을 위한 플라스틱소재 판의 기계적 특성 조사)

  • Lee, E.K.;Kang, C.G.
    • Transactions of Materials Processing
    • /
    • v.17 no.8
    • /
    • pp.633-642
    • /
    • 2008
  • It's important to measure quantitative properties about thermal-nano behavior of polymer for producing high quality components using Nanoimprint lithography process. Nanoscale indents can be used to make the cells for molecular electronics and drug delivery, slots for integration into nanodevices, and defects for tailoring the structure and properties. In this study, formability of polymethylmetacrylate(PMMA) and polycarbonate(PC) were characterized Polymer has extreme variation in thermo mechanical variation during forming high temperature. Because of heating the polymer, it becomes softer than at room temperature. In this case it is particularly important to study high temperature-induced mechanical properties of polymer. Nanoindenter XP(MTS) was used to measure thermo mechanical properties of PMMA and PC. Polymer was heated by using the heating stage on NanoXP. At CSM(Continuous Stiffness Method) mode test, heating temperature was $110^{\circ}C,120^{\circ}C,130^{\circ}C,140^{\circ}C$ and $150^{\circ}C$ for PMMA, $140^{\circ}C,150^{\circ}C,160^{\circ}C,170^{\circ}C$ and $180^{\circ}C$ for PC, respectively. Maximum indentation depth was 2000nm. At basic mode test, heating temperature was $90^{\circ}C$ and $110^{\circ}C$ for PMMA, $140^{\circ}C,160^{\circ}C$ for PC. Maximum load was 10mN, 20mN and 40mN. Also indented pattern was observed by using SEM and AFM. Mechanical properties of PMMA and PC decreased when temperature increased. Decrease of mechanical properties from PMMA went down rapidly than that of PC.