• 제목/요약/키워드: polymer nanocomposites

검색결과 372건 처리시간 0.023초

Rheology of PP/Clay Hybrid Produced by Supercritical $CO_2$ Assisted Extrusion

  • Lee, Sang-Myung;Shim, Dong-Cheol;Lee, Jae-Wook
    • Macromolecular Research
    • /
    • 제16권1호
    • /
    • pp.6-14
    • /
    • 2008
  • Polypropylene (PP)-layered silicate nanocomposites were developed using a new processing method involving a supercritical carbon dioxide ($scCO_2$)-assisted co-rotating twin-screw extrusion process. The nanocomposites were prepared through two step extrusion processes. In the first step, the PP/clay mixture was extruded with $CO_2$ injected into the barrel of the extruder and the resulting foamed extrudate was cooled and pelletized. In the second step, the foamed extrudate was extruded with venting to produce the final PP/clay nanocomposites without $CO_2$. In this study, organophilic-clay and polypropylene matrix were used. Maleic anhydride grafted polypropylene (PP-g-MA) was used as a compatibilizer. This study focused on the effect of $scCO_2$ on the dispersion characteristics of the clays into a PP matrix and the rheological properties of the layered silicate based PP nanocomposites. The dispersion properties of clays in the nanocomposites as well as the rheological properties of the nanocomposites were examined as a function of the PP-g-MA concentration. The degree of dispersion of the clays in the nanocomposites was analyzed by X-ray diffraction and transmission electron microscope. Various rheological properties of the nanocomposites were measured using a rotational rheometer. In the experimental results, the $scCO_2$ assisted continuous manufacturing extrusion system was used to successfully produce the organophilic-clay filled PP nanocomposites. It was found that $scCO_2$ had a measurable effect on the clay dispersion in the polymer matrix and the melt intercalation of a polymer into clay layers.

A Study on Electrical and Thermal Properties of Polyimide/MWNT Nanocomposites

  • Park, Soo-Jin;Chae, Sung-Won;Rhee, John-Moon;Kang, Shin-Jae
    • Bulletin of the Korean Chemical Society
    • /
    • 제31권8호
    • /
    • pp.2279-2282
    • /
    • 2010
  • In this work, the electrical and thermal properties of polyimide/multi-walled carbon nanotube (MWNT) nanocomposites were investigated. The polyimide/MWNT nanocomposites contained from 0 to 2.0 wt % of MWNT. The electrical properties of the polyimide films were characterized by a specific resistance measurement. The thermal properties were evaluated using thermogravimetric analysis (TGA) and a differential scanning calorimeter (DSC). It was found that the thermal properties of the polyimide nanocomposites increased with increasing MWNT content and specific resistance as well. This result indicated that the crosslinking of polyimide/MWNT nanocomposites was enhanced by good distribution of the MWNT in the polyimide resins, resulting in the increase of the electrical and thermal properties of the nanocomposites.

Degradation and Rheological Properties of Biodegradable Nanocomposites Prepared by Melt Intercalation Method

  • Lee, Su-Kyong;Seong, Dong-Gi;Youn, Jae-Ryoun
    • Fibers and Polymers
    • /
    • 제6권4호
    • /
    • pp.289-296
    • /
    • 2005
  • Biodegradable nanocomposites were prepared by mixing a polymer resin and layered silicates by the melt intercalation method. Internal structure of the nanocomposite was characterized by using the small angle X-ray scattering (SAXS) and transmission electron microscope (TEM). Nanocomposites having exfoliated and intercalated structures were obtained by employing two different organically modified nanoclays. Rheological properties in shear and extensional flows and biodegradability of nanocomposites were measured. In shear flow, shear thinning behavior and increased storage modulus were observed as the clay loading increased. In extensional flow, strain hardening behavior was observed in well dispersed system. Nanocomposites with the exfoliated structure had better biodegradability than nanocomposites with the intercalated structure or pure polymer.

A Review on Nanocomposite Based Electrical Insulations

  • Paramane, Ashish S.;Kumar, K. Sathish
    • Transactions on Electrical and Electronic Materials
    • /
    • 제17권5호
    • /
    • pp.239-251
    • /
    • 2016
  • The potential of nanocomposites have been drawing the intention of the researchers from energy storage to electrical insulation applications. Nanocomposites are known to improve dielectric properties, such as the increase in dielectric breakdown strength, suppressing the partial discharge (PD) as well as space charge, and prolonging the treeing, etc. In this review, different theories have been established to explain the reactions at the interaction zone of polymer matrix and nanofiller; the characterization methods of nanocomposites are also presented. Furthermore, the remarkable findings in the fields of epoxy, cross-linked polyethylene (XLPE), polypropylene and polyvinyl chloride (PVC) nanocomposites are reviewed. In this study, it was observed that there is lack of comparison between results of lab scale specimens and actual field aged cables. Also, non-standardization of the preparation methods and processing parameters lead to changes in the polymer structure and its surface degradation. However, on the positive side, recent attempt of 250 kV XLPE nanocomposite HVDC cables in service may deliver a promising performance in the coming years. Moreover, materials such as self-healing polymer nanocomposites may emerge as substitutes to traditional insulations.

고분자 나노복합재료의 내부 구조 및 유변학적 성질 (Structural and Rheological Characterization of Polymer Nanocomposites)

  • Seong, Dong-Gil;Youn, Jae-Ryoun
    • 한국섬유공학회:학술대회논문집
    • /
    • 한국섬유공학회 2003년도 봄 학술발표회 논문집
    • /
    • pp.195-197
    • /
    • 2003
  • Polymer layered silicate nanocomposite has become an important area of polymer research becaues of its predominant properties in mechanical and thermal properties. Polymer layered silicate nanocomposites show outstanding improvements in tensile strength and modulus, heat distortion temperature, gas and liquid permeability, solvent resistance, and so on. But These improved properties are realized only when silicate particles are well dispersed in polymer matrix. (omitted)

  • PDF

유기변성 LDH를 사용한 SAN 나노컴포지트의 형태학, 투명성 및 내열성 (Morphology, Transparency, and Thermal Resistance of SAN Nanocomposites Containing Organically Modified Layered Double Hydroxides)

  • 김석준
    • 폴리머
    • /
    • 제36권3호
    • /
    • pp.287-294
    • /
    • 2012
  • 스테아린산 또는 올레인산으로 변성된 ZnAl-LDH(Zn:Al = 2:1 몰비)를 공침법으로 합성하여 SAN 고분자에 여러 비율로 첨가하였다. SAN 복합재료들은 동일방향으로 회전하는 이축압출기를 통해 제조되었고 여러 시편으로 사출성형되었다. SAN 나노컴포지트들의 형태학, 투명성과 내열성은 TEM, XRD, UV-Vis 분광광도계와 TGA로 평가하였다. 모든 나노컴포지트들은 XRD 패턴에서 피크가 없는 박리된 또는 박리/삽입 혼합 구조를 보였고 TEM 사진에서는 LDH가 밀집되어 있는 섬 구조를 볼 수 있었다. OA-$Zn_2Al$ LDH를 포함하는 SAN 나노컴포지트들이 상대적으로 우수한 투과도를 보였다. 모든 SAN 나노컴포지트들은 2단계 열산화분해에서만 향상된 내열성을 보였다. 유기변성제와 고분자의 상호작용이 고분자 나노컴포지트의 물성 향상에 중요한 역할을 한다고 설명할 수 있다.

Effect of added ionomer on morphology and properties of PP/clay nanocomposites

  • Liu, Hongzhi;Lim, Hyoung-Taek;Kim, Yong-Kyoung;Han, Nam-Kun;Ahn, Kyung-Hyun;Lee, Seoung-Jong
    • 한국고분자학회:학술대회논문집
    • /
    • 한국고분자학회 2006년도 IUPAC International Symposium on Advanced Polymers for Emerging Technologies
    • /
    • pp.367-367
    • /
    • 2006
  • With poly (ethylene-co-methacrylic acid) ionomer (i.e. Surlyn) as a compatibilizer, PP/organoclay (Cloisite(R)20A) nanocomposites were prepared via melt compounding in a co-rotating twin-screw extruder. For comparison, the widely used PP-g-MA was also used as a reference. The content of organoclay was fixed at 5phr based on the total weight of polymer resins. The structures of nanocomposites were characterized by XRD, rheometry in small amplitude oscillatory shear, SEM, and TEM, respectively. It was found that PP/Surlyn/OMMT nanocomposites displayed higher intercalation degree and better dispersion effect than the corresponding PP/PP-g-MA/OMMT counterpart. Additionally, their mechanical properties and wettability were measured.

  • PDF

Manufacturing Polymer/clay Nanocomposites Using a Supercritical Fluid Process

  • Jung, Hyun-Taek;Yoon, Ho-Gyu;Lim, Soon-Ho
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제9권4호
    • /
    • pp.63-65
    • /
    • 2008
  • The increased interest in reducing the environmental effects caused by releasing organic compounds and aqueous waste has motivated the development of polymeric materials in supercritical fluids. Recently, supercritical fluids have been used in material synthesis and processing because of their special properties, such as high diffusivity, low viscosity, and low surface tension. Supercritical carbon dioxide is the most attractive because it is non-toxic, non-flammable, and has moderate critical temperature and critical pressure values. Supercritical carbon dioxide can also swell most polymers. In this study, we prepared polymer/clay nanocomposites using supercritical fluids. Cloisites 10A, 15A, 25A, and 30B used in this study are montmorillonites modified with a quaternary ammonium salt. The nanocomposites of polymer/clay were characterized by X-ray diffraction, thermogravimetric analysis, and differential scanning calorimetry.

다층카본나노튜브가 보강된 고분자 나노복합체의 기계적, 열적, 전기적 특성 (Mechanical, thermal and electrical properties of polymer nanocomposites reinforced with multi-walled carbon nanotubes)

  • 국정호;허몽영;양훈;신동훈;박대희;나창운
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2007년도 하계학술대회 논문집 Vol.8
    • /
    • pp.215-216
    • /
    • 2007
  • Semiconducting layers are thin rubber film between electrical cable wire and insulating polymer layers having a volume resistivity of ${\sim}10^2{\Omega}cm$. A new semiconducting material was suggested in this study based on the carbon nanotube(CNT)-reinforced polymer nanocomposites. CNT-reinforced polymer nanocomposites were prepared by solution mixing with various polymer type and dual filler system. The mechanical, thermal and electrical properties were investigated as a function of polymer type and dual filler system based on CNT and carbon black. The volume resistivity of composites was strongly related with the crystallinity of polymer matrix. With decreased crystallinity, the volume resistivity decreased linearly until a critical point, and it remained constant with further decreasing the crystallinity. Dual filler system also affected the volume resistivity. The CNT-reinforced nanocomposite showed the lowest volume resistivity. When a small amount of carbon black(CB) was replaced the CNT, the crystallinity increased considerably leading to a higher volume resistivity.

  • PDF

반응성 유기화 점토를 이용한 내충격성 폴리스티렌 나노복합재료의 합성 및 물성 (Synthesis and Properties of High Impact Polystyrene Nanocomposites Based upon Organoclay Having Reactive Group)

  • 황성준;정대원;이성재
    • 폴리머
    • /
    • 제32권4호
    • /
    • pp.347-352
    • /
    • 2008
  • 직접 중합법으로 내충격성 폴리스티렌(HIPS)과 유기화 점토로 구성된 나노복합재료를 합성하여 점토 첨가에 따른 물성을 조사하였다. 반응성 작용기를 갖는 유기화 점토인 vinylbenzyltrimethyl clay(VBC)와 octadecylvinylbenzyldimethyl clay(ODVC)를 sodium montmorillonite와 계면활성제인 vinylbenzyltrimethyl ammonium chloride(VBTMAC)와 octadecylyinylbenzdimethyl ammonium bromide(ODVBDAB)의 이온교환으로 각각 제조하였고 상용화된 유기화 점토인 $Cloisite^{(R)}$ 10A(C10A)를 비교를 위해 사용하였다. ODVD로 제조한 나노복합재료의 경우 X-선 회절(XRD) 피크가 사라진 것으로 보아 실리케이트 층이 박리된 것을 알 수 있었고, C10A로 제조한 나노복합재료의 경우 XRD 피크의 각도가 작은 쪽으로 이동하는 것으로 보아 실리케이트 층에 고분자 사슬이 층간 삽입된 것을 알 수 있었다. 저장탄성률과 복소점도로 나타낸 유변물성은 유기화 점토의 함량이 증가할수록 증가하였다.