• Title/Summary/Keyword: polymer materials

Search Result 4,705, Processing Time 0.029 seconds

A Correlation Between Crack Growth and Abrasion for Selected Rubber Compounds

  • Lee, Hyunsang;Wang, Wonseok;Shin, Beomsu;Kang, Seong Lak;Gupta, Kailash Chandra;Nah, Changwoon
    • Elastomers and Composites
    • /
    • v.54 no.4
    • /
    • pp.313-320
    • /
    • 2019
  • A typical wear pattern was reported to resemble the fatigue crack growth behavior considering its mechanism, especially for amorphous rubbers such as styrene-butadiene rubber (SBR). In this study, the wear and crack growth rates were correlated using two separate experiments for carbon black and silica-reinforced selected rubber compounds. The wear rate was determined using a blade-type abrasion tester, where the frictional energy input during wearing was measured. The crack propagation rate was determined under different tearing energy inputs using a home-made fatigue tester, with a pure-shear test specimen containing pre-cracks. The rates of abrasion and crack propagation were plotted on a log-log scale as a function of frictional and tearing energies, respectively. Reasonable agreement was observed, indicating that the major mechanism of the abrasion pattern involved repeated crack propagation.

New Liquid Crystal-Embedded PVdF-co-HFP-Based Polymer Electrolytes for Dye-Sensitized Solar Cell Applications

  • Vijayakumar, G.;Lee, Meyoung-Jin;Song, Myung-Kwan;Jin, Sung-Ho;Lee, Jae-Wook;Lee, Chan-Woo;Gal, Yeong-Soon;Shim, Hyo-Jin;Kang, Yong-Ku;Lee, Gi-Won;Kim, Kyung-Kon;Park, Nam-Gyu;Kim, Suhk-Mann
    • Macromolecular Research
    • /
    • v.17 no.12
    • /
    • pp.963-968
    • /
    • 2009
  • Liquid crystal (LC; E7 and/or ML-0249)-embedded, poly(vinylidenefluoride-co-hexafluoropropylene) (PVdF-co-HFP)-based, polymer electrolytes were prepared for use in dye-sensitized solar cells (DSSCs). The electrolytes contained 1-methyl-3-propylimidazolium iodide (PMII), tetrabutylammonium iodide (TBAI), and iodine ($I_2$), which participate in the $I_3^-/I^-$ redox couple. The incorporation of photochemically stable PVdF-co-HFP in the DSSCs created a stable polymer electrolyte that resisted leakage and volatilization. DSSCs, with liquid crystal(LC)-embedded PVdF-co-HFP-based polymer electrolytes between the amphiphilic ruthenium dye N719 absorbed to the nanocrystalline $TiO_2$ photoanode and the Pt counter electrode, were fabricated. These DSSCs displayed enhanced redox couple reduction and reduced charge recombination in comparison to that fabricated from the conventional PVdF-co-HFP-based polymer electrolyte. The behavior of the polymer electrolyte was improved by the addition of optimized amounts of plasticizers, such as ethylene carbonate (EC) and propylene carbonate (PC). The significantly increased short-circuit current density ($J_{sc}$, $14.60\;mA/cm^2$) and open-circuit voltage ($V_{oc}$, 0.68 V) of these DSSCs led to a high power conversion efficiency (PCE) of 6.42% and a fill factor of 0.65 under a standard light intensity of $100\;mW/cm^2$ irradiation of AM 1.5 sunlight. A DSSC fabricated by using E7-embedded PVdF-co-HFP-based polymer electrolyte exhibited a maximum incident photon-to-current conversion efficiency (IPCE) of 50%.

Hierarchical porous carbon nanofibers via electrospinning

  • Raza, Aikifa;Wang, Jiaqi;Yang, Shan;Si, Yang;Ding, Bin
    • Carbon letters
    • /
    • v.15 no.1
    • /
    • pp.1-14
    • /
    • 2014
  • Carbon nanofibers (CNFs) with diameters in the submicron and nanometer range exhibit high specific surface area, hierarchically porous structure, flexibility, and super strength which allow them to be used in the electrode materials of energy storage devices, and as hybrid-type filler in carbon fiber reinforced plastics and bone tissue scaffold. Unlike catalytic synthesis and other methods, electrospinning of various polymeric precursors followed by stabilization and carbonization has become a straightforward and convenient way to fabricate continuous CNFs. This paper is a comprehensive and brief review on the latest advances made in the development of electrospun CNFs with major focus on the promising applications accomplished by appropriately regulating the microstructural, mechanical, and electrical properties of as-spun CNFs. Additionally, the article describes the various strategies to make a variety of carbon CNFs for energy conversion and storage, catalysis, sensor, adsorption/separation, and biomedical applications. It is envisioned that electrospun CNFs will be the key materials of green science and technology through close collaborations with carbon fibers and carbon nanotubes.

LC Alignment Behaviors at Rubbed Films of Brush Polyimides;Perpendicular LC Alignment versus Parallel LC Alignment

  • Lee, Taek-Joon;Hahm, Seok-Gyu;Lee, Seung-Woo;Chae, Bok-Nam;Lee, Seong-June;Kim, Seung-Bin;Jung, Jin-Chul;Ree, Moon-Hor
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.766-768
    • /
    • 2004
  • Rubbed films of a series of poly(p-phenylene 3,6-bis(4-(n-alkyloxy)phenyloxy)pyromellitimide)s (Cn-PMDA-PDA PIs), which are well-defined brush PIs composed of two aromatic-aliphatic bristles per repeat unit of a fully rodlike backbone, were investigated in detail using atomic force microscopy (AFM), optical retardation analysis and linearly polarized infrared (IR) spectroscopy in order to elucidate their surface morphology and molecular orientation. The liquid crystal (LC) alignment behavior and the anchoring energy of LC molecules on the rubbed films were also determined.

  • PDF

Effect of Poly(ethylene glycol) dimethyl ether Plasticizer on Ionic Conductivity of Cross-Linked Poly[siloxane-g-oligo(ethylene oxide)] Solid Polymer Electrolytes

  • Kang, Yongku;Seo, Yeon-Ho;Kim, Dong-Wook;Lee, Chang-Jin
    • Macromolecular Research
    • /
    • v.12 no.5
    • /
    • pp.431-436
    • /
    • 2004
  • Cross-linked network solid polymer electrolytes were prepared by means of in situ hydrosilylation between poly[hydromethylslioxane-g-oligo(ethylene oxide)] and diallyl or triallyl group-containing poly(ethylene glycols). The conductivities of the resulting polymer electrolytes were greatly enhanced upon the addition of poly(ethylene glycol) dimethyl ether (PEGDME) as an ion-conducting plasticizer. Conductivities of the cross-linked polymer electrolytes were more dependent on the molecular weight of PEGDME than on the cross-linkers. The maximum conductivity was found to be 5.6${\times}$10$\^$-4/ S/cm at 30$^{\circ}C$ for the sample containing 75 wt% of PEGDME (M$\_$n/ =400). These electrolytes exhibited electrochemical stability up to 4.5 V against the lithium reference electrode. We observed reversible electrochemical plating/stripping of lithium on the nickel electrode.

An Evaluation on the Flexural Strength of Concrete Beams Repaired by Polymer Resin (폴리머계로 보수한 철근콘크리트 보의 휨성능 평가)

  • Kim, Byung-Guk;Shin, Young-Soo;Hong, Gi-Suop;Hong, Yung-Kyun;Choi, Oan-Chul
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.1 no.1
    • /
    • pp.107-112
    • /
    • 1997
  • A series of reinforced concrete beams was tested to evaluate the flexural performance of the repaired RC beams. The key parameters for this study were the size and location of the patch, and the repair materials, including polymer, polymer-cementitious and cementitious materials. The repaired specimens failed by a typical flexural mode with minor interfacial bond failure. Beams repaired with polymer, polymer-cementitious and cementitious materials recover 100%, 91%, and 97% of the flexural strength respectively, while beams with cement mortar lose approximately 30% of the strength. Compared with the pressure injection techniques the specimens repaired with patching techniques show low flexural strength, with significant interfacial bond failure. Location and size of the repaired part do not affect the recovering performance. Interfacial behavior between repair and strengthening materials is the major influencing factor for the composite structures.

  • PDF

Effect of Reaction Conditions on the Preparation of Nano-sized Ni Powders inside a Nonionic Polymer

  • Kim, Tea-Wan;Kim, Dong-Hyun;Park, Hong-Chae;Yoon, Seog-Young
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.462-463
    • /
    • 2006
  • Monodispersed and nano-sized Ni powders were synthesized from aqueous nickel sulfate hexahydrate $(NiSO_4{\cdot}6H_2O)$ inside nonionic polymer network by using wet chemical reduction process. The sucrose was used as a nonionic polymer network source. The effect of reaction conditions such as the amount of sucrose and a various reaction temperature, nickel sulfate hexahydrate molarity. The influence of a nonionic polymer network on the particle size of the prepared Ni powders was characterized by means of X-ray diffraction (XRD), scanning electron microscopy (SEM), and particle size analysis (PSA). The results showed that the obtained Ni powders were strong by dependent of the reaction conditions. In particular, the Ni powders prepared inside a nonionic polymer network had smooth spherical shape and narrow particle size distribution.

  • PDF