Effect of Poly(ethylene glycol) dimethyl ether Plasticizer on Ionic Conductivity of Cross-Linked Poly[siloxane-g-oligo(ethylene oxide)] Solid Polymer Electrolytes

  • Kang, Yongku (Advanced Materials Division, Korea Research Institute of Chemical Technology) ;
  • Seo, Yeon-Ho (Advanced Materials Division, Korea Research Institute of Chemical Technology) ;
  • Kim, Dong-Wook (Advanced Materials Division, Korea Research Institute of Chemical Technology) ;
  • Lee, Chang-Jin (Advanced Materials Division, Korea Research Institute of Chemical Technology)
  • Published : 2004.10.01

Abstract

Cross-linked network solid polymer electrolytes were prepared by means of in situ hydrosilylation between poly[hydromethylslioxane-g-oligo(ethylene oxide)] and diallyl or triallyl group-containing poly(ethylene glycols). The conductivities of the resulting polymer electrolytes were greatly enhanced upon the addition of poly(ethylene glycol) dimethyl ether (PEGDME) as an ion-conducting plasticizer. Conductivities of the cross-linked polymer electrolytes were more dependent on the molecular weight of PEGDME than on the cross-linkers. The maximum conductivity was found to be 5.6${\times}$10$\^$-4/ S/cm at 30$^{\circ}C$ for the sample containing 75 wt% of PEGDME (M$\_$n/ =400). These electrolytes exhibited electrochemical stability up to 4.5 V against the lithium reference electrode. We observed reversible electrochemical plating/stripping of lithium on the nickel electrode.

Keywords

References

  1. Polymer Electrolytes F. M. Gray
  2. J. Power Sources v.88 F. B. Dias;L. Plomp;J. B. J. Veldhuis https://doi.org/10.1016/S0378-7753(99)00529-7
  3. Macromolecules v.29 H. R. Allcock;S. E. Kuharick;C. S. Reed;M. E. Napierala https://doi.org/10.1021/ma9514535
  4. Macromolecules v.30 H. R. Allcock;R. Ravikiran;S. J. M. O'Connor https://doi.org/10.1021/ma9616423
  5. J. Electronchem. Soc. v.145 M. Kono;E. Hayashi;M. Watanabe https://doi.org/10.1149/1.1838514
  6. J. Appl. Electronchem. v.27 Y. Choi;S. K. Kim;K. H. Chang;M. H. Lee https://doi.org/10.1023/A:1018455114086
  7. J. Power Sources v.92 Y. Kang;H. J. Kim;E. Kim;B. Oh;J. H. Cho https://doi.org/10.1016/S0378-7753(00)00546-2
  8. Makromol. Chem. Rapid Commun. v.7 D. Fish;I. M. Khan;J. Smid https://doi.org/10.1002/marc.1986.030070303
  9. Br. Polym. J. v.20 D. Fish;I. M. Khan;E. Wu;J. Smid https://doi.org/10.1002/pi.4980200320
  10. Electrochim. Acta. v.191 H. Tsutsumi;M. Yamamoto;M. Morita;Y. Matsuda;T. Nakamura;H. Asai
  11. Electrochim. Acta. v.45 Z. Zhang;S. Fang https://doi.org/10.1016/S0013-4686(99)00435-1
  12. J. Am. Chem. Soc. v.110 R. Spindler;D. F. Shriver https://doi.org/10.1021/ja00218a006
  13. Chem. Mater. v.13 D. P. SIska;D. F. Shriver https://doi.org/10.1021/cm000420n
  14. Macromolecules v.34 R. Hooper;L. J. Lyons;M. K. Mapes;D. Schumacher;D. A. Moline;R. West https://doi.org/10.1021/ma0018446
  15. J. Polym. Sci.;Part A :Polym. Chem. v.40 W.-J. Liang;C. L. Kuo;C.-L. Lin;P.-L. Kuo https://doi.org/10.1002/pola.10204
  16. J. Power Sources v.119;120;121 Y. Kang;W. Lee;D. H. Suh;C. Lee
  17. Korea Patent, 0344910 Y. Kang;Y. H. Seo;C. Lee
  18. Macromolecules v.36 Z. Zhang;D. Sherlock;R. West;R. West;K. Amine;L. J. Lyons https://doi.org/10.1021/ma0349276
  19. Korea Polym. J. v.4 H. J. Kim;E. Kim;S. B. Rhee
  20. Proceedings of Electrochemical Society v.99-125 Y. Kang;H. J. Kim;E. Kim;B. Oh;J. H. Cho
  21. Solid State Ionics v.9-10 C. A. Angell https://doi.org/10.1016/0167-2738(83)90206-0
  22. J. Power Sources v.89 O. Buriez;Y. B. Han;J. Jou;J. B. Kerr;J. Qiao;S. E. Sloop;M. Tian;S. Wang https://doi.org/10.1016/S0378-7753(00)00423-7
  23. Chem. Mater. v.9 K. M. Abraham;Z. Jiang;B. Carroll https://doi.org/10.1021/cm970075a
  24. Polymer Electrolyte Reviews v.1 M. M. Armand;J. R. McCallum(ed.);C. A. Vincent(ed.)