• Title/Summary/Keyword: polymer functionalization

Search Result 63, Processing Time 0.026 seconds

Anionic Synthesis of Dipyridine Chain End-Functionalized Polystyrene and Polybutadiene (리빙 음이온 중합에 의한 Dipyridine 말단 관능화 폴리스티렌 및 폴리부타디엔의 합성)

  • Ji, Sang-Chul;Lee, Jong-Seop;Kim, Doo-Hwan;Kang, Cheol-Han;Park, Jong-Hyuk;Lee, Bum-Jae
    • Polymer(Korea)
    • /
    • v.34 no.2
    • /
    • pp.159-165
    • /
    • 2010
  • Dipyridine-terminated polystyrenes and polybutadienes were synthesized by the chain endfunctionalization reaction of polystyryllithium (PSLi) and polybutadienyllithium (PBDLi) with di(2-pyridyl) ketone(DPK) using a living anionic polymerization method in the Ar-glove box. Living polymeric lithiums with low molecular weights (Mw=1000~2000 g/mol) were used to investigate the chain end-functionalization yield with DPK and the degree of coupling reaction by the attack of organolithium to the pyridine ring in the presence of TMEDA using GPC, $^1H$-NMR, $^{13}C$ analysis. DPK-terminated PBD exhibited much higher functionalization yield and less amount of coupling reaction compared with DPK-terminated PS. 86% functionalization yield with 9% degree of coupling was obtained when the PBDLi was added dropwise to DPK solution at room temperature. The functionalization yield was increased as the reaction temperature decreased, however, no LiCl effect was observed in this chain end-functionalization reaction with DPK.

Polymer materials for enzyme immobilization and their application in bioreactors

  • Fang, Yan;Huang, Xiao-Jun;Chen, Peng-Cheng;Xu, Zhi-Kang
    • BMB Reports
    • /
    • v.44 no.2
    • /
    • pp.87-95
    • /
    • 2011
  • Enzymatic catalysis has been pursued extensively in a wide range of important chemical processes for their unparalleled selectivity and mild reaction conditions. However, enzymes are usually costly and easy to inactivate in their free forms. Immobilization is the key to optimizing the in-service performance of an enzyme in industrial processes, particularly in the field of non-aqueous phase catalysis. Since the immobilization process for enzymes will inevitably result in some loss of activity, improving the activity retention of the immobilized enzyme is critical. To some extent, the performance of an immobilized enzyme is mainly governed by the supports used for immobilization, thus it is important to fully understand the properties of supporting materials and immobilization processes. In recent years, there has been growing concern in using polymeric materials as supports for their good mechanical and easily adjustable properties. Furthermore, a great many work has been done in order to improve the activity retention and stabilities of immobilized enzymes. Some introduce a spacer arm onto the support surface to improve the enzyme mobility. The support surface is also modified towards biocompatibility to reduce non-biospecific interactions between the enzyme and support. Besides, natural materials can be used directly as supporting materials owning to their inert and biocompatible properties. This review is focused on recent advances in using polymeric materials as hosts for lipase immobilization by two different methods, surface attachment and encapsulation. Polymeric materials of different forms, such as particles, membranes and nanofibers, are discussed in detail. The prospective applications of immobilized enzymes, especially the enzyme-immobilized membrane bioreactors (EMBR) are also discussed.

The Functionalization and Preparation Methods of Carbon Nanotube-Polymer Composites: A Review (탄소나노튜브-폴리머 복합체의 기능화와 제조방법)

  • Oh, Won-Chun;Ko, Weon-Bae;Zhang, Feng-Jun
    • Elastomers and Composites
    • /
    • v.45 no.2
    • /
    • pp.80-86
    • /
    • 2010
  • Carbon nanotubes (CNTs) exhibit excellent mechanical, electrical, and magnetic properties as well as nanometer scale diameter and high aspect ratio, which make them an ideal reinforcing agent for high strength polymer composites. The functionalized CNTs are believed to be very promising in the fields such as preparation of functional and composite materials. CNT-Polymer composites are expected to have good processability characteristics of the polymer and excellent functional properties of the CNTs. However, since CNTs usually form stabilized bundles due to Van der Waals interactions, are extremely difficult to disperse and align in a polymer matrix. The biggest issues in the preparation of CNT-reinforced composites reside in efficient dispersion of CNTs into a polymer matrix, and the alignment and control of the CNTs in the matrix. There are several methods for the dispersion of nanotubes in the polymer matrix such as solution mixing, bulk mixing, melt mixing, in-situ polymerization and chemical functionalization of the carbon nanotubes, etc. These methods and preparation of high performance CNT-polymer composites are described in this review.

Research Status on the Carbon Nanotube Reinforced Nanocomposite (탄소나노튜브 강화 나노복합재료의 연구현황)

  • 차승일;김경태;이경호;모찬빈;홍순형
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2003.10a
    • /
    • pp.25-28
    • /
    • 2003
  • Carbon nanotubes(CNTs), since their first discovery, have been considered as new promising materials in various fields of applications including field emission displays, memory devices, electrodes, NEMS constituents, hydrogen storages and reinforcements in composites due to their extra-ordinary properties. The carbon nanotube reinforced nanocomposites have attracted attention owing to their outstanding mechanical and electrical properties and are expected to overcome the limit of conventional materials. Various application areas are possible for carbon nanotube reinforced nanocomposites through the functionalization of carbon nanotubes. Carbon nanotube reinforced polymer matrix nanocomposites have been fabricated by liquid phase process including surface functionalization and dispersion of CNTs within organic solvent. In case of carbon nanotube reinforced polymer matrix nanocomposites, the mechanical strength and electrical conducting can be improved by more than an order of magnitude. The carbon nanotube reinforced polymer matrix nanocomposites can be applied to high strength polymers, conductive polymers, optical limiters and EMI materials. In spite of successful development of carbon nanotube reinforced polymer matrix nanocomposites, the researches on carbon nanotube reinforced inorganic matrix nanocomposites show limitations due to a difficulty in homogeneous distribution of carbon nanotubes within inorganic matrix. Therefore, the enhancement of carbon nanotube reinforced inorganic nanocomposites is under investigation to maximize the excellent properties of carbon nanotubes. To overcome the current limitations, novel processes, including intensive milling process, sol-gel process, in-situ process and spark plasma sintering of nanocomposite powders are being investigated. In this presentation, current research status on carbon nanotube reinforced nanocomposites with various matrices are reviewed.

  • PDF

Multiwalled Carbon Nanotubes Functionalized with PS via Emulsion Polymerization

  • Park, In-Cheol;Park, Min;Kim, Jun-Kyung;Lee, Hyun-Jung;Lee, Moo-Sung
    • Macromolecular Research
    • /
    • v.15 no.6
    • /
    • pp.498-505
    • /
    • 2007
  • This study demonstrated the in-situ functionalization with polymers of multi-walled carbon nanotubes (MWNTs) via emulsion polymerization. Polystyrene-functionalized MWNTs were prepared in an aqueous solution containing styrene monomer, non-ionic surfactant and a cationic coupling agent ([2-(methacryloyloxy)ethyl]trime-thylammonium chloride (MATMAC)). This process produced an interesting morphology in which the MWNTs, consisting of bead-string shapes or MWNTs embedded in the beads, when polymer beads were sufficiently large, produced nanohybrid material. This morphology was attributed to the interaction between the cationic coupling agent and the nanotube surface which induced polymerization within the hemimicellar or hemicylindrical structures of surfactant micelles on the surface of the nanotubes. In a solution containing MATMAC alone without surfactant, carbon nanotubes (CNTs) were not well-dispersed, and in a solution containing only surfactant without MATMAC, polymeric beads were synthesized in isolation from CNTs and continued to exist separately. The incorporation of MATMAC and surfactant together enabled large amounts of CNTs (> 0.05 wt%) to be well-dispersed in water and very effectively encapsulated by polymer chains. This method could be applied to other well-dispersed CNT solutions containing amphiphilic molecules, regardless of the type (i.e., anionic, cationic or nonionic). In this way, the solubility and dispersion of nanotubes could be increased in a solvent or polymer matrix. By enhancing the interfacial adhesion, this method might also contribute to the improved dispersion of nanotubes in a polymer matrix and thus the creation of superior polymer nanocomposites.

Enhanced thermomechanical properties of poly(ethylene oxide) and functionalized bacterial cellulose nanowhiskers composite nanofibers

  • Yun, Ok-Ja
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.376-376
    • /
    • 2016
  • Poly(ethylene oxide) (PEO)/functionalized bacterial cellulose nanowhiskers (f-BCNW) (0.1 wt%) composite nanofibers were fabricated by electrospinning process and the thermomechanical properties were significantly enhanced more than the PEO and PEO/bacterial cellulose nanowhiskers (BCNW) (0.1 wt%) composite nanofibers. The functionalization of BCNW (f-BCNW) was performed by microwave plasma treatment for effects of nitrogen functionalization of chemically-driven BCNW. The N-containing functional groups of f-BCNW enhanced chemical bonding between the hydroxyl groups of the polymer chains in the PEO matrix and diameter size of PEO/f-BCNW (0.1 wt%) composite nanofibers were decreased more than PEO and PEO/BCNW (0.1 wt%) composite nanofibers on the same concentration. The strong interfacial interactions between the f-BCNW nanofillers and polymer matrix were improved the thermomechanical properties such as crystallization temperature, weight loss and glass transition temperature (Tg) compared to PEO and PEO/BCNW composites nanofibers. The results demonstrated that N2 plasma treatment of BCNW is very useful in improving thermal stability for bio-applications.

  • PDF

Synthesis, End-Functionalization and Characterization of Hyperbranched Polysiloxysilanes from $AB_3$ Type Monomer

  • Ishida, Yoshihito;Yokomachi, Kazutoshi;Seino, Makoto;Hayakawa, Teruaki;Kakimoto, Masa-aki
    • Macromolecular Research
    • /
    • v.15 no.2
    • /
    • pp.147-153
    • /
    • 2007
  • Hyperbranched polysiloxysilanes (HBPSs), with a variety of terminal functional groups (vinyl, epoxy, carboxyl and hydroxyl), were synthesized by the self-polymerization of an $AB_3$ type monomer of tris(dimethylvinylsiloxy) silane, with subsequent end-functionalizations, such as epoxidation and radical addition reaction, respectively. The ratio of the $\alpha-and$ $\beta-addition$ linkages in the HBPS polymerized by hydrosilylation of the $AB_3$ monomer was found to be approximately 1 to 3. The thermal stability and solubility were affected by the terminal functional groups.