• Title/Summary/Keyword: polymer fibers

Search Result 577, Processing Time 0.029 seconds

Effect of Matrix Viscosity on Clay Dispersion in Preparation of Polymer/Organoclay Nanocomposites

  • Ko, Moon-Bae;Jho, Jae-Young;Jo, Won-Ho;Lee, Moo-Sung
    • Fibers and Polymers
    • /
    • v.3 no.3
    • /
    • pp.103-108
    • /
    • 2002
  • The viscosity effect of matrix polymer on melt exfoliation behavior of an organoclay in poly($\varepsilon$-caprolactone) (PCL) was investigated. The viscosity of matrix polymer was controlled by changing the molecular weight of poly($\varepsilon$-eaprolactone), the processing temperature, and the rotor speed of a mini-molder. Applied shear stress facilitates the diffusion of polymer chains into the gallery of silicate layers by breaking silicate agglomerates down into smaller primary particles. When the viscosity of PCL is lower, silicate agglomerates are not perfectly broken into smaller primary particles. At higher viscosity, all of silicate agglomerates are broken down into primary particles, and finally into smaller nano-scale building blocks. It was also found that the degree of exfoliation of silicate layers is dependent upon not only the viscosity of matrix but thermodynamic variables.

A Review on Thermal Conductivity of Polymer Composites Using Carbon-Based Fillers : Carbon Nanotubes and Carbon Fibers

  • Hong, Jin-Ho;Park, Dong-Wha;Shim, Sang-Eun
    • Carbon letters
    • /
    • v.11 no.4
    • /
    • pp.347-356
    • /
    • 2010
  • Recently, the use of thermal conductive polymeric composites is growing up, where the polymers filled with the thermally conductive fillers effectively dissipate heat generated from electronic components. Therefore, the management of heat is directly related to the lifetime of electronic devices. For the purpose of the improvement of thermal conductivity of composites, fillers with excellent thermally conductive behavior are commonly used. Thermally conductive particles filled polymer composites have advantages due to their easy processibility, low cost, and durability to the corrosion. Especially, carbon-based 1-dimensional nanomaterials such as carbon nanotube (CNT) and carbon nanofiber (CNF) have gained much attention for their excellent thermal conductivity, corrosion resistance and low thermal expansion coefficient than the metals. This paper aims to review the research trends in the improvement of thermal conductivity of the carbon-based materials filled polymer composites.

Performance of a Ceramic Fiber Reinforced Polymer Membrane as Electrolyte in Direct Methanol Fuel Cell

  • Nair, Balagopal N.;Yoshikawa, Daishi;Taguchi, Hisatomi
    • Membrane Journal
    • /
    • v.14 no.1
    • /
    • pp.53-56
    • /
    • 2004
  • Direct Methanol Fuel Cell (DMFC) is considered as a candidate technology for applications in stationary, transportation as well as electronic power generation purposes. To develop a high performance direct methanol fuel cell(DMFC), a competent electrolyte membrane is needed. The electrolyte membrane should be durable and methanol crossover must be low. One of the approaches to increase the stability of generally used polymer electrolyte membranes such as Nafion against swelling or thermal degradation is to bond it with an inorganic material physically or chemically. In Noritake Company, we have developed a novel method of reinforcing the polymer electrolyte matrix with inorganic fibers. Methanol crossover values measured were significantly lower than the original polymer electrolyte membranes. These fiber reinforced electrolyte membranes (FREM) were used for DMFC study and stable power output values as high 160 mW/$\textrm{cm}^2$ were measured. The details of the characteristics of the membranes as well as I-V data of fuel cell stacks are detailed in the paper.

An Experimental Study on Spalling Reduction Methode of Polymer Modified Cement Mortar Using Fiber Cocktail (섬유혼입 공법을 이용한 폴리머 시멘트 모르타르의 폭렬저감방안에 관한 실험적 연구)

  • Kim, Ji-Hoon;Ryu, Dong-Woo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2020.06a
    • /
    • pp.96-97
    • /
    • 2020
  • Polymer modified cement mortar (PCM) is commonly used as a repair material. However, in high-temperature environments such as fire, it is more likely to explode than cement mortar. The polymer is thermally decomposed at a high temperature to form a gas, and the gas remaining inside the structure increases the internal pressure to generate a burst. When an spalling occurs, the coating is peeled off and dropped, and high temperature is transmitted to the inside of the structure. In severe cases, even the reinforcing bar is exposed, which can lead to the collapse of the structural member due to severe loss of strength. In this study, in order to reduce spalling of PCM, a fiber mixing method was selected from the refractory method to find an appropriate blending ratio of fibers and polymers.

  • PDF

Improvement of Mechanical and Electrical Properties of Poly(ethylene glycol) and Cyanoresin Based Polymer Electrolytes

  • Oh Kyung-Wha;Choi Ji-Hyoung;Kim Seong-Hun
    • Fibers and Polymers
    • /
    • v.7 no.2
    • /
    • pp.89-94
    • /
    • 2006
  • Ionic conductivity and mechanical properties of a mixed polymer matrix consisting of poly(ethylene glycol) (PEG) and cyanoresin type M (CRM) with various lithium salts and plasticizer were examined. The CRM used was a copolymer of cyanoethyl pullulan and cyanoethyl poly(vinyl alcohol) with a molar ratio of 1:1, mixed plasticizer was ethylene carbonate (EC) and propylene carbonate (PC) at a volume ratio of 1:1. The conductive behavior of polymer electrolytes in the temperature range of $298{\sim}338\;K$ was investigated. The $PEG/LiClO_4$ complexes exhibited the highest ionic conductivity of ${\sim}10^{-5}S/cm$ at $25^{\circ}C$ with the salt concentration of 1.5 M. In addition, the plasticized $PEG/LiClO_4$ complexes exhibited improvement of ionic conductivity. However, their complexes showed decreased mechanical properties. The improvement of ionic conductivity and mechanical properties could be obtained from the polymer electrolytes by using CRM. The highest ionic conductivity of PEG/CRM/$LiClO_4$/(EC-PC) was $5.33{\time}10^{-4}S/cm$ at $25^{\circ}C$.

Effects of Fiber Surface-Treatment and Sizing on the Dynamic Mechanical and Interfacial Properties of Carbon/Nylon 6 Composites

  • Cho, Dong-Hwan;Yun, Suk-Hyang;Kim, Jun-Kyung;Lim, Soon-Ho;Park, Min;Lee, Geon-Woong;Lee, Sang-Soo
    • Carbon letters
    • /
    • v.5 no.1
    • /
    • pp.1-5
    • /
    • 2004
  • The effects of fiber surface-treatment and sizing on the dynamic mechanical properties of unidirectional and 2-directional carbon fiber/nylon 6 composites by means of dynamic mechanical analysis have been investigated in the present study. The interlaminar shear strengths of 2-directional carbon/nylon 6 composites sized with various thermosetting and thermoplastic resins are also measured using a short-beam shear test method. The result suggests that different surface-treatment levels onto carbon fibers may influence the storage modulus and tan ${\delta}$ behavior of carbon/nylon 6 composites, reflecting somewhat change of the stiffness and the interfacial adhesion of the composites. Dynamic mechanical analysis and short-beam shear test results indicate that appropriate use of a sizing material upon carbon fiber composite processing may contribute to enhancing the interfacial and/or interlaminar properties of woven carbon fabric/nylon 6 composites, depending on their resin characteristics and processing temperature.

  • PDF

Enhanced Interfacial Adhesion of Carbon Fibers by Poly (arylene ether phosphine oxide) Coatings (Poly(arylene ether phosphine oxide) 코팅에 의한 탄소섬유의 계면 접착성 향상 연구)

  • 김익천;강현민;육종일;윤태호
    • Composites Research
    • /
    • v.12 no.4
    • /
    • pp.55-61
    • /
    • 1999
  • Interfacial shear strength (IFSS) of poly(arylene ether phosphine oxide) (PEPO) coated carbon fibers was evaluated via microdroplet test and compared with results obtained from carbon fibers coated with poly(arylene ether sulfone) (PES), Udel$^{\circledR}$ P-1700 and Ultem$^{\circledR}$ 1000. Interfacial adhesion between thermoplastics and uncoated carbon fibers was also measured in order to understand the adheion mechanism. PEPO coated carbon fibers showed the highest IFSS, followed by PES, Udel and Ultem coated fibers. A similar trend was observed for thermoplastic/uncoated fibers. SEM analysis indicated that only PEPO coated fiber exhibited cohesie failure in the vinylester resin, while others showed failure at or near the interface of polymer coating and vinylester resin. The enhanced interfacial adhesion by PEPO coating could be attributed to the strong interaction of P = 0 moiety to the fiber as well as to the vinylester resin.

  • PDF

Effect of Different Conditions of Sodium Chloride Treatment on the Characteristics of Kenaf Fiber-Epoxy Composite Board

  • SETYAYUNITA, Tamaryska;WIDYORINI, Ragil;MARSOEM, Sri Nugroho;IRAWATI, Denny
    • Journal of the Korean Wood Science and Technology
    • /
    • v.50 no.2
    • /
    • pp.93-103
    • /
    • 2022
  • Currently, biofibers are used as a reinforcement in polymer composites for structural elements and construction materials instead of the synthetic fibers which cause environmental problems and are expensive. One of the chemicals with a pH close to neutral that can be potentially used as a modified fiber material is sodium chloride (NaCl). Therefore, this study aims to investigate the characteristics of a composite board made from NaCl-treated kenaf fiber. A completely randomized design method was used with consideration of two factors: the content of NaCl in the treatment solution (1 wt%, 3 wt%, and 5 wt%) and the duration of immersion of fibers in the solution (1 h, 2 h, and 3 h). The NaCl treatment was conducted by soaking the fibers in the solution for different durations. The fibers were then rinsed with water until the pH of the water reached 7 and subsequently dried inside an oven at 80℃ for 6 h. Kenaf fiber and epoxy were mixed manually with the total loading of 20 wt% based on the dry weight of the fiber. Physical and mechanical properties of the fibers were then evaluated based on JIS A 5908 particleboard standards. The results showed that increasing NaCl content in the fiber treatment solution can increase the physical and mechanical properties of the composite board. The properties of fibers treated with 5 wt% NaCl for 3 h were superior with a modulus of elasticity of 2.085 GPa, modulus of rupture of 19.77 MPa, internal bonding of 1.8 MPa, thickness swelling of 3%, and water absorption of 10.9%. The contact angle of untreated kenaf fibers was 104°, which increased to 80° and 73° on treatment with 1 wt% and 5 wt% NaCl for 3 h, respectively.