• Title/Summary/Keyword: polymer cement concrete

Search Result 328, Processing Time 0.031 seconds

Porosity of Polymer-Modified Mortars Using Methylmethacrylate-Butyl Acrylate Latexes with Various Monomer Ratios (MMA/BA 합성 라텍스 혼입 폴리머 시멘트 모르타르의 세공성상)

  • 형원길;송해룡;김완기;소양섭
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.05a
    • /
    • pp.87-92
    • /
    • 2002
  • At present, the polymer-modified mortars are used as high-performance as well as multi-functional materials in the construction industry. The purpose of this study is to synthesize polymer to modify in cement mortars and make test samples to understand pore size distribution. This paper deals with the effect of monomer ratio on the typical properties of polymer-modified mortars using Methylmethacrylate-Butyl Acrylate(MMA/BA) latexes synthesized through emulsion polymerization. From the results, we knew that the pore volume of polymer-modified mortars using Methylmethacrylate-Butyl Acrylate latexes at bound MMA contents of 70 and 60 percent is 7.5-75cm$^3$/g and the fine pore volume is increased with an increase in the polymer-cement ratio. The total pore volume of polymer-modified mortars using MMA/BA latexes is linearly reduced with an increase in the bound MMA content and increased in the polymer-cement ratio.

  • PDF

Investigating the performance of polymer cement resistance in football stadium construction

  • Yangguang Zhang
    • Advances in concrete construction
    • /
    • v.15 no.3
    • /
    • pp.203-213
    • /
    • 2023
  • New techniques, technologies, and materials should be used to design and build sports stadiums. Since this century, much progress has been made in covering the roofs of sports stadiums, and the possibility of accurate computer calculation has been provided for stadiums, so by choosing a new structure, we can double the beauty and resistance of these stadiums. A stadium has an excellent and valuable design when its structure, shell, building, materials, and joinery follow a high architectural idea at all levels and scales. This article examines the mechanical performance of polymer cement strength in the construction of football stadiums, along with their structural knowledge in the form of the best examples in the world. Portland cement is one of the most used materials for constructing football stadiums. However, its production requires spending a lot of money, wasting energy, and damaging the environment. Considering the disadvantages in the production and consumption of concrete in different environments, it is necessary to find alternative materials. It should be used with cheaper, simpler technology, abundant primary resources, energy saving, less environmental damage, and better chemical and physical properties in concrete. High-strength concrete technology is considered a new development in the construction industry of concrete structures. In hardened concrete, strength and durability are two main factors, and as the compressive strength of concrete increases, concrete becomes more brittle. As a result, its tensile strength does not increase in proportion to the increase in compressive strength and has less strain tolerance. For this reason, the need to use is evident from the fibers in high-strength concrete. Fibers are used in concrete to increase tensile strength, prevent crack propagation, and significantly increase softness. The increase with the change of these resistances depends on the strength of concrete without fibers, the shape of fibers, and the percentage of fibers. This cement is obtained from the wastes of chemical and petrochemical industries and the wastes from coal combustion, which have the properties mentioned as substitutes for Portland cement.

A Study on the Early Hydration-Retarding Mechanism of Polymer Modified Cement (Polymer Modified Cement의 초기 수화 지연 mechanism에 관한연구)

  • Kang, Seung-Min;Kang, Hyun-Ju;Song, Myong-Shin;Park, Phil-Hwan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.221-222
    • /
    • 2009
  • The results showed that the addition of VAE polymer strongly reduces the $Ca(OH)_2$ formation, being this result attributed to reduce degree of cement hydration caused by different ion elution amount of polymer modified cement pastes and interaction between acetate anion from the partial hydrolysis of co-polymer and Ca$^{2+}$ion from OPC hydration.

  • PDF

Strength Properties of Polymer-Modified Mortar with High-Range Water- Reducing Agents (고성능 감수제를 첨가한 폴리머 시멘트 모르타르의 강도 특성)

  • 이윤수;주명기
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.811-815
    • /
    • 2003
  • The effects of high-range water-reducing agent (WRA) content and polymer-cement ratio on the strength properties of autoclaved SBR-modified mortars with WRA are examined. As a result, the flexural strength of the autoclaved SBR-modified mortars with WRAs tends to increase with increasing WRA content and polymer-cement ratio, and reaches a maximum at a WRA content of 2.0%. The compressive strength of the autoclaved SBR-modified mortars with WRAs is inclined to increase with increasing WRA content and polymer-cement ratio, and reaches a maximum at a WRA content of 2.0% and a polymer-cement ratio of 10%. From the test results, the addition of the WRAs is effective for improving strength properties of the autoclaved SBR-modified mortars.

  • PDF

Physical and Mechanical Proeperties of Permeable Polymer Concrete with Fly Ash and CaCO3 (플라이 애시와 탄산칼슘을 혼입한 투수성 폴리머 콘크리트의 물리.역학적 특성)

  • 성찬용
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.41 no.2
    • /
    • pp.104-110
    • /
    • 1999
  • This study was performed to evaluate the properties of permeable polymer concrete with fly ash and CaCO3. The following conclusions are drawn. The static modulusof elasticity is in the range of 1.19 $\times$105 ~1.49$\times$105 kgf/$\textrm{cm}^2$, which is approximately 53 ~56% of that of the normal cement concrete. The oission's number of permeable polymer concrete is in the range of 3.95 ~6.53, which is less than that of the normal cement concrete. The dynamic modulus of elasticity is in the range of 1.29$\times$105 ~1.59$\times$105 kgf/$\textrm{cm}^2$, which is approximately less compared to that of the normal cement of the static modulus . Fly ash 50% and CaCO3 50% filled permeable polymer concrete has showed higher dynamic modulus. The water permeability is in therange of 3.971 ~4.393$\ell$ /$\textrm{cm}^2$/h, and it is largely dependent upon the mix design. These concrete can be used to the structures which need water permeability.

  • PDF

Mechanical Properties of Steel Fiber Reinforced Polymer Concrete (강섬유 보강 폴리머 콘크리트의 역학적 특성)

  • 김기락;연규석;이윤수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10a
    • /
    • pp.336-341
    • /
    • 1998
  • Steel fiber reinforced concrete(SFRC) is a composite material possessing many physical and mechanical properties which are distinct from unreinforced concrete. The use of steel fiber reinforcement to improve the flexural and tensile strengths, extensibility and toughness of ordinary cement concrete is well known at present, but reinforcement of polymer concrete with steel fibers has been hardly reported untill now. The objective of this study was to improve the properties of the polymer concrete by addition of steel fibers. In this paper steel fiber reinforced polymer concrete is prepared with various steel fiber contents and aspect ratio($\ell$ /d), and their mechanical properties were investigated experimentally.

  • PDF

Effects of Fillers on Mixing and Mechanical Properties of Polymer Concrete (충진재가 폴리머 콘크리트의 배합과 역학적 성질에 미치는 영향)

  • 연규석;김광우;김기성;김관호
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.35 no.2
    • /
    • pp.81-91
    • /
    • 1993
  • This study was performed to evalute effects of fillers on the mixing characteristics and mechanical properties of polymer concrete. Two types of unsaturated polyester polymer and two types of epoxy resin were used as binder material, and the portland cement, a fly ash and heavy calcium carbonate were used as filler. Following conclusions were drawn from the research results. 1. Working life of polymer concrete was not affected by filler types, but affected significantly by polymer types and quantities of hardener and catalysts. 2. Without concerning polymer types, use of heavy calcuim carbonate as filler was the best in improving workability.3. The highest strength was achieved by heavy calcium carbonate in using unsaturated polyester resin and by fly ash in using epoxy resin type.4. Elastic modulus was in the range of 2.05X 10-5~2.6X 10-5gf/cm$^2$, which was approximatly 60% of that of cement concrete. Heavy calcium carbonate with unsaturated polyester resin and fly ash with epoxy resin showed relatively higher elastic modulus.

  • PDF

Mix Design of Polymer Grouting Mortar for Prepacked Concrete Using Polymer Dispersions (폴리머 디스퍼션을 이용한 프리팩트 콘크리트용 주입 모르타르의 배합에 관한 연구)

  • Jo, Young-Kug;Kim, Wan-Ki
    • Journal of the Korea Institute of Building Construction
    • /
    • v.8 no.5
    • /
    • pp.85-91
    • /
    • 2008
  • Prepacked concrete has recently been used in the special constructions fields such as underwater concrete work, heavy-weight concrete work, underground structure work, partial repair works for damaged reinforced concrete structures. and polymer-modified mortars have been employed as grouting mortars for the prepacked concrete. The purpose of this study is to recommend the optimum mix design of polymer-modified grouting mortars for prepacked concrete. Polymer-modified mortars using SBR and EVA emulsions as admixture of grouting mortars for prepacked concrete are prepared with various mix proportions such as sand-binder ratio, fly ash replacement ratio, polymer-binder ratio. and tested for flowability, viscosity of grouting mortars, bleeding ratio, expansion ratio, flexural and compressive strengths of grouting mortars and compressive and tensile strengths of prepacked concretes. From the test results, it is apparent that polymer-modified mortars can be produced as grouting mortars when proper mix design is chosen. We can design the mix proportions of high strength mortars for prepacked concrete according to the control of mix design factors such as type of polymer, polymer-binder ratio, sand-binder ratio and fly ash replacement ratio. Water-binder ratio of plain mortars for a constant flowability value are in the ranges of 43% to 50%. SBR-modified mortar has a little water-binder ratios compared to those of plain mortar, however, EVA-modified mortar needs a high water-binder ratio due to a high viscosity of polymer dispersion. The expansion and bleeding ratios of grouting mortars are also controlled in the proper value ranges. Polymer-modified grouting mortars have good flexural. compressive and tensile strengths, are not affected with various properties with increasing fly ash replacement to cement and binder-sand ratio. In this study, SBR-modified grouting mortar with a polymer-binder ratio of 10% or less, a fly ash replacement of 10% to cement and a sand-binder ratio of 1.5 is recommended as a grouting mortar for prepacked concrete.

Development Trends of Precast Polymer Concrete Products (프리캐스트 폴리머 콘크리트의 개발동향)

  • 연규석;이봉학;김광우;김태경;김관호
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1992.04a
    • /
    • pp.99-104
    • /
    • 1992
  • There is a limit manufacturing precast products for the construction industry using conventional cement concrete and precast iron due to many reasons. Therefore, precast product technologies using polymer concrete are widely developed across the world because using polymer concrete can be over come this limitation. This study reviewed and analyzed the trends of development and practical usages of ploymer concrete precast products in foreign countries based on selected literatures. It was observed that polymer concrete precast products have been widely used as utility structures wall and slab members. decoration products, traffic products, hydraulic structures and industry equipments.

  • PDF

Strength Properties of Polymer-Modified Cement Mortar (분말형 폴리머 시멘트모르타르의 강도 특성)

  • Kim, Seong-Soo;Jung, Ho-Seop;Lee, Jeong-Bae;Yoon, Ha-Young;Han, Seung-Woo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.571-574
    • /
    • 2005
  • This study investigated the strength of concrete to improve construction material with polymer cement mortar. Some mixtures composed of Styrene-Butadiene Rubber(SBR) and Ethylene Vinyl Acetate(EVA) Poly Vinyl Alcohol(PVA) were studied. The three mixtures carried out the physical, mechanical test to determine its properties which a include : compressive, flexural, bond strength test. The test results show that the compressive strength was increased at long-term age when compared to early ages for increasing polymer contents. It was found that flexural strength and bond strength became larger as polymer to cement ratio became higher.

  • PDF