• Title/Summary/Keyword: polymer blend

Search Result 491, Processing Time 0.022 seconds

Effect of Precured EPDM on the Property of Magneto-rheological Elastomer Based on NR/EPDM Blend

  • Na, Bokgyun;Chung, Kyungho
    • Elastomers and Composites
    • /
    • v.53 no.2
    • /
    • pp.67-74
    • /
    • 2018
  • Magneto-rheological elastomers (MREs) are smart materials in which the inherent stiffness and damping properties can be changed by the influence of an external magnetic field. The magneto-rheological (MR) effect depends on the orientation characteristics of the dispersed magneto-responsible particles (MRPs) in the matrix. In this study, natural rubber (NR) and ethylene propylene diene rubber (EPDM) were blended and used as a matrix of an MRE. EPDM was pre-cured before blending with NR. The Mooney viscosity, curing characteristics, and mechanical properties were analyzed with various pre-curing conditions of EPDM and the NR/EPDM blend. The results show that excellent mechanical properties of the NR/EPDM blend-based MRE were obtained when the pre-curing time of EPDM was 60 min. The aging property of the NR-based MRE was improved by the introduction of pre-cured EPDM. Also, the anisotropic MRE showed a higher MR effect than that of the isotropic MRE.

Surface Mophology of Blends Containing Poly(vinylidene fluoride) on the Basis of Atomic Force Microscopy (원자력간 현미경을 이용한 Poly(vinylidene fluoride)계 고분자 블렌드의 표면 모폴로지 연구)

  • Lee, Won-Ki;Park, Chan-Young;Cho, Won-Jei;Ha, Chang-Sik
    • Journal of Adhesion and Interface
    • /
    • v.2 no.1
    • /
    • pp.18-22
    • /
    • 2001
  • Surface morphology of [poly(vinylidene fluoride)/poly(methyl methacrylate)] (PVDF/PMMA) was investigated on the basis of atomic force microscopy and differential scanning calorimeter measurements. The surface of (PMMA/PVDF) and (H14-PMMA/PVDF) blend films was fully composed with PVDF crystals. Although the difference of surface free energy between PMMA and PVDF is increased with increasing carboxyl group content in PMMA, however, in the case of (H24-PMMA/PVDF) blend film surface, the existence of aggregated H-PMMA was observed. It was found that the degree of surface enrichment of the blend is more affected by the magnitude of intermolecular interaction than the surface free energy difference, Besides, the introduction of carboxyl group for miscible (PVDF/PMMA) blend decreased the miscibility in the blend.

  • PDF

A Study on Thermoplastic Elastomer Blend Using Waste Rubber Powder(I): Screw Configurations, Morphologies and Mechanical Properties (폐고무 분말을 이용한 TPE 블렌드에 관한 연구(I) : 스크류 조합, 모폴로지, 기계적 물성)

  • Lee, Sung-Hyo;Hwang, Sung-Hyuk;Kim, Jin-Kuk
    • Elastomers and Composites
    • /
    • v.36 no.2
    • /
    • pp.86-93
    • /
    • 2001
  • For solving the environmental problem of the waste EPDM and for new TPE blend materials, we developed a new kind of TPE material using a co-rotating twin screw extruder. To improve the mechanical properties of TPE material such as tensile strength, elongation at break, and modulus of the blend, PP and waste EPDM powder were blended with different screw configurations. The mechanical properties of the blends and morphology of the TPE were investigated. As the number of kneading disc and left-handed screw element increased, dynamic vulcanization of the material was increased because the shear stress and residence time of blends increased.

  • PDF

Mechanical Degradation of Polystyrene by Mastication (Mastication에 의한 Polystyrene의 機械的分裂)

  • Ki Hyun Chung;Chwa Kyung Sung
    • Journal of the Korean Chemical Society
    • /
    • v.17 no.4
    • /
    • pp.298-305
    • /
    • 1973
  • Following results were obtained for the mechanical degradation of polystyrene (for polystyrene itself and when blended with rubber) by roll mastication. 1) The rate of mechanical degradation for polystyrene itself can be represented by the second-order rate equation proposed by Goto. $-\frac{dP_t}{dt} = k_s(P_t-P_{\infty})^2$ Where Pt is the degree of polymerization of the degraded polymer at t minutes and $P{\infty}$ is the final degree of polymerization. 2) The mechanical degradation of polystyrene component in the polystyrene-rubber (SBR, BR) blend system occurred similarly as that of polystyrene itself. 3) Under the experimental conditions the mechanical degradation rate of the polystyrene component of the polystyrene-rubber, (SBR, BR) blend system followed approximately the same second-order equation as that for polystyrene itself.

  • PDF

Light Scattering Studies on the Phase Structure of Ethyl Acetate Casting PMMA/PVAc Blends

  • Ha, Chang-Sik;Lee, Won-Ki;Cho, Won-Jei;T. Ougizawa;T. Inoue
    • Macromolecular Research
    • /
    • v.9 no.1
    • /
    • pp.66-70
    • /
    • 2001
  • In this work, we present the development of phase structure of the poly(methyl methacrylate)(PMMA)/ poly(vinylacetate)(PVAc) mixtures in ethyl acetate solution by light scattering. The PMMA/PVAc blends cast from ethyl acetate solutions exhibited fine "modulated structures" over broad blend composition ranges, which originated from the spinodal decomposition of the ternary polymer solutions at low polymer concentrations during the casting. The periodic distance was depended on the blend compositions and evaporation times.

  • PDF

Characteristics and Properties of Fluoro/Silicone Rubber Blend System (불소/실리콘 고무 블렌드의 특성과 물성)

  • Lee, Jin-Kook;Song, Hwan-Jae;Kim, Mi-Ra
    • Journal of Adhesion and Interface
    • /
    • v.9 no.3
    • /
    • pp.14-19
    • /
    • 2008
  • In this study, silicone rubber (SR40) and fluororubber (FKM) mixture blends were prepared by various weight percentages, and their properties were characterized. The crosslinking rate increased as the contents of SR40 due to the crosslinking agent in SR40. As contents of FKM increase in SR40/FKM blends, thermal decomposition temperature of blends increased. When SR40/FKM blend ratio was at 50/50, the thermal decomposition stabilization was higher than that of pure SR40. The contact angle of SR40/FKM blend increased as the increase of SR40 contents in blend. All composition of SR40/FKM blends showed typical phase separation morphology. As the contents of SR40 increase in SR40/FKM blend, the degree of separation in SR40/FKM blends also increased.

  • PDF

Structural Characteristics and Properties of Silk Fibroin/Polyurethane Blend Films

  • Um, In-Chul;Kweon, Hae-Yong;Chang mo Hwang;Min, Byung-Goo;Park, Young-Hwan
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.5 no.2
    • /
    • pp.163-170
    • /
    • 2002
  • In this paper, silk fibroin (SF)/polyurethane (PU) blend films were fabricated to develop a new biomaterial for biomedical applications. These blend films were prepared using formic acid as a cosolvent, and structural characteristics and properties of blend films were investigated. FTIR results suggested that there was no specific interaction between SF and PU, implying molecular immiscibility in SF/PU blend films. Furthermore, it was revealed by XRD method that the crystalline region of blend components was not perturbed by counterpart polymers. The degree of phase separation of SF/PU blend films was diminished by increasing PU content in blend. Especially, the blend with 70% content of PU showed no evidence of macro-phase separation in SEM observation. However, SF/PU blend (70/30) was revealed to be phase-separated in a lower dimension confirmed by DMTA measurement. TGA result showed that thermal decomposition temperature of blend film was slightly decreased compared to those of SF and PU polymer itself, Though mechanical properties of SF/PU blend films were not good enough due to the solvent, blood compatibility of PU can be enhanced markedly by mixing with SF for SF/PU blend film.

A Study on Fabrication of Polyester Copolymers (Ⅵ) -Physical Properties of PET/PETG Copolymer Blend by the Drawing Conditions- (폴리에스테르 공중합체의 Fabrication 연구 (Ⅵ) -PET/PETG 공중합체 블렌드의 연신조건에 따른 물리적 특성-)

  • 현은재;이소화;김기영;제갈영순;장상희
    • Polymer(Korea)
    • /
    • v.26 no.3
    • /
    • pp.335-343
    • /
    • 2002
  • Blend resin (PET/PETG 70/30 blend) of poly (ethylene terephthalate) (PET) and poly (ethylene terephthalate glycol) (PETG) of weight percent 70/30 was prepared by a twin-screw extruder. Undrawn films of the blend and pure PETG were made by melt-press in hot press. Drawn films were made by capillary rheometer. Crystallinity, shrinkage, thermal, dynamic mechanical, and mechanical properties of these blends and PETG drawn films were investigated by wide angle X-ray diffractometer, dry oven, DSC thermal analyzer, and tensile tester. The crystallinity and density of these films increased with increasing draw ratio and draw rate but decreased with increasing draw temperature. The crystallinity and density of the blend films were higher than those of PETG films. The tensile strength and tensile modulus of these drawn alms increased with increasing draw ratio and draw rate but decreased with increasing draw temperature. The tensile strength and tensile modulus of blend films were higher than those of PETG films. Shrinkage of PETG md blend films decreased with draw ratio and draw rate. Shrinkage of undrawn blend film was 600% higher than that of pure PET film.

Study on the Morphology of the PC/ABS Blend by High Shear Rate Processing (PC/ABS 블렌드의 고속전단성형에 따른 모폴로지 변화에 관한 연구)

  • Lee, Dong Uk;Yong, Da Kyoung;Lee, Han Ki;Choi, Seok Jin;Yoo, Jae Jung;Lee, Hyung Il;Kim, Seon-Hong;Lee, Kee Yoon;Lee, Seung Goo
    • Korean Chemical Engineering Research
    • /
    • v.52 no.3
    • /
    • pp.382-387
    • /
    • 2014
  • The PC/ABS blends were manufactured with high shear rate processing. Changes of the blend morphology were analyzed according to the screw speed and processing time. To find optimal conditions of the high shear rate processing of the PC/ABS blend, blend morphology and size of the dispersed phase, ABS, were observed with a SEM. Also, tensile properties of the PC/ABS blends were measured to investigate the effect of the high shear rate process with the screw speed of 500 rpm to 3000 rpm for processing times of 10s to 40s. Especially, to observe the dispersed phase of the PC/ABS blend clearly, fracture surfaces of the PC/ABS blend were etched with chromic acid solution. As screw speed and processing time increase, dispersed phase size of the PC/ABS blend decreases and mechanical properties of the blend decrease as well. Especially, at screw speed over than 1000 rpm of high shear rate processing, mechanical properties of the PC/ABS blends decrease drastically due to the degradation of the blend during the high shear rate processing. Consequently, the optimal condition of screw speed of the high shear processing of the PC/ABS blend is set at 1000rpm, in this study. Under optimal condition, the PC/ABS blend has relatively high mechanical properties with the relatively stable micro-structure having nanometer scale dispersed phase.