• Title/Summary/Keyword: polymer aggregate

Search Result 175, Processing Time 0.033 seconds

Responses of Low-Quality Soil Microbial Community Structure and Activities to Application of a Mixed Material of Humic Acid, Biochar, and Super Absorbent Polymer

  • Li, Fangze;Men, Shuhui;Zhang, Shiwei;Huang, Juan;Puyang, Xuehua;Wu, Zhenqing;Huang, Zhanbin
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.9
    • /
    • pp.1310-1320
    • /
    • 2020
  • Low-quality soil for land reuse is a crucial problem in vegetation quality and especially to waste disposal sites in mining areas. It is necessary to find suitable materials to improve the soil quality and especially to increase soil microbial diversity and activity. In this study, pot experiments were conducted to investigate the effect of a mixed material of humic acid, super absorbent polymer and biochar on low-quality soil indexes and the microbial community response. The indexes included soil physicochemical properties and the corresponding plant growth. The results showed that the mixed material could improve chemical properties and physical structure of soil by increasing the bulk density, porosity, macro aggregate, and promote the mineralization of nutrient elements in soil. The best performance was achieved by adding 3 g·kg-1 super absorbent polymer, 3 g·kg-1 humic acid, and 10 g·kg-1 biochar to soil with plant total nitrogen, dry weight and height increased by 85.18%, 266.41% and 74.06%, respectively. Physicochemical properties caused changes in soil microbial diversity. Acidobacteria, Bacteroidetes, Chloroflexi, Cyanobacteria, Firmicutes, Nitrospirae, Planctomycetes, and Proteobacteria were significantly positively correlated with most of the physical, chemical and plant indicators. Actinobacteria and Armatimonadetes were significantly negatively correlated with most measurement factors. Therefore, this study can contribute to improving the understanding of low-quality soil and how it affects soil microbial functions and sustainability.

Effect of PCE superplasticizers on rheological and strength properties of high strength self-consolidating concrete

  • Bauchkar, S.D.;Chore, H.S.
    • Advances in concrete construction
    • /
    • v.6 no.6
    • /
    • pp.561-583
    • /
    • 2018
  • A variety of polycarboxylate ether (PCE)-based superplasticizers are commercially available. Their influence on the rheological retention and slump loss in respect of concrete differ considerably. Fluidity and slump loss are the cardinal features responsible for the quality of concrete. These are related to the dispersion of cement particles and the hydration process which are greatly influenced by type of polycarboxylate ether (PCE)-based superplasticizers. On the backdrop of relatively less studies in the context of rheological retention of high strength self-consolidating concrete (HS-SCC), the experimental investigations were carried out aiming at quantifying the effect of the six different PCE polymers (PCE 1-6) on the rheological retention of HS-SCC mixes containing two types of Ordinary Portland Cements (OPC) and unwashed crushed sand as the fine aggregate. The tests that were carried out included $T_{500}$, V-Funnel, yield stress and viscosity retention tests. The supplementary cementitious materials such as fly ash (FA) and micro-silica (MS) were also used in ternary blend keeping the mix paste volume and flow of concrete constant. Low water to binder ratio was used. The results reveal that not only the PCEs of different polymer groups behave differently, but even the PCEs of same polymer groups also behave differently. The study also indicates that the HS-SCC mixes containing PCE 6 and PCE 5 performed better as compared to the mixes containing PCE 1, PCE 2, PCE 3 and PCE 4 in respect of all the rheological tests. The PCE 6 is a new class of chemical admixtures known as Polyaryl Ether (PAE) developed by BASF to provide better rheological properties in even in HS-SCC mixes at low water to binder mix. In the present study, the PCE 6, is found to help not only in reduction in the plastic viscosity and yield stress, but also provide good rheological retention over the period of 180 minutes. Further, the early compressive strength properties (one day compressive strength) highly depend on the type of PCE polymer. The side chain length of PCE polymer and the fineness of the cement considerably affect the early strength gain.

Adhesive Strength in Tension of High Volume PAE-Modified Cement Mortar with High Flowability for Floor Finishing

  • Do, Jeong-Yun;Soh, Yang-Seob
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.5
    • /
    • pp.739-746
    • /
    • 2003
  • Various researches on the application of polymer dispersions to the cement mortar and concrete have been carried out in many countries like America, Japan and Germany and so on due to their high performance and good modification effect. PAE of polymer dispersion widely used in situ was employed that the high flowability may be induced in the cement mortar. In order to investigate the modification of cement mortar with high flowability by PAE and fracture mode of adhesive strength properties in tension of that, experimental parameters were set as PAE solid-cement ratio(P/C) and cement: fine aggregate(C:F) and the experiments such as unit weight, flow, consistency change, crack resistance and segregation that inform on the general properties have been done. Adhesion in tension is measured with a view to comprehending the properties and fracture mode in tensile load. Consistency change of cement mortar modified by PAE did grow better as the ratio of PAE solid-cement increased and was much superior to that of resin based flooring such as polyurethane and epoxy which recorded the loss of consistency in 90 min. after mixing. Adhesive strength in tension increased with continuity during curing period and showed the maximum in case of C:F=1:1 and P/C=20%.

Supramolecular assembly of peptide molecules for applications in biological multivalent interactions

  • Lim, Yong-Beom;Park, So-Mi;Lee, Eun-Ji;Jeong, Hae-Mi;Ryu, Ja-Hyoung;Yang, Won-Young;Lee, Myong-Soo
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.265-265
    • /
    • 2006
  • Multivalent interactions, which are characterized by the simultaneous binding of multiple ligands on multiple receptors, are prevalent in biological system. We have shown that it is able to make a supramolecular aggregate coated with multiple functional molecules fairly easily by simply mixing one building block. In this particular example, a mannose-coated object was able to agglutinate bacterial cells with cognate binding partners through multivalent interactions. This kind of strategy can be applied in developing materials that can selectively remove pathogens. Supramolecular assembly of this type should be very useful in exploring multivalent biological interactions.

  • PDF

An Experimental Study on the Mechanical Properties of High Performance Lightweight Polymer Concrete (고성능 경량 폴리머 콘크리트의 역학적 특성에 관한 실험적 연구)

  • 성찬용
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.37 no.3_4
    • /
    • pp.72-81
    • /
    • 1995
  • This study was performed to evaluate the mechanical properties of high performance lightweight polymer concrete using fillers and synthetic lightweight coarse aggregate. The following conclusions were drawn. 1. The unit weight of the G3, G4 and G5 concrete was 1.500t/m$^3$, 1.506t/m$^3$ and 1.535t/m$^3$, respectively. Specially, the unit weights of those concrete were decreased 33~35% than that of the normal cement concrete. 2. The highest strength was achieved by heavy calcium carbonate, it was increased 27% by compressive, 95% by tensile and 195% by bending strength than that of the normal cement concrete, respectively. 3. The elastic modulus was in the range of 8.0 x 104~ 10.4 x lO4kg/cm2, which was approximately 35~42% of that of the normal cement concrete. Normal cement concrete was showed relatively higher elastic modulus. 4. The ultrasonic pulse velocity of fillers was in the range of 2, 900m/sec, which was showed about the same compared to that of the normal cement concrete. Heavy calcium carbonate was showed higher pulse velocity. 5. The compressive, tensile, bending strength and ultrasonic pulse velocity were largely showed with the increase of unit weight.

  • PDF

Synthesis and Characterization of Di and Triblock Copolymers Containing a Naphthalene Unit for Polymer Electrolyte Membranes (고분자전해질 막을 위한 나프탈렌 단위를 포함하는 디 및 트리 블록공중합체의 합성 및 특성분석)

  • KIM, AERHAN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.27 no.6
    • /
    • pp.660-669
    • /
    • 2016
  • A fluorinated-sulfonated, hydrophobic-hydrophilic copolymer was planed subsequently synthesized using typical nucleophilic substitution polycondensation reaction. A novel AB and ABA (or BAB) block copolymers were synthesized using sBCPSBP (sulfonated 4,4'-bis[4-chlorophenyl)sulfonyl]-1,1'-biphenyl), DHN (1,5-dihydroxynaphthalene), DFBP (decafluorobiphenyl) and HFIP (4,4'-hexafluoroisopropylidenediphenol). All block copolymers were easily cast and made into clear films. The structure and synthesized copolymers and corresponding membranes were analyzed using GPC (gel permeation chromatography), $^1H$-NMR ($^1H$ nuclear magnetic resonance) and FT-IR (Fourier transform infrared). TGA (Thermogravimetric analysis) and DSC (differential scanning calorimetry) analysis showed that the prepared membranes were thermally stable, so that elevated temperature fuel cell operation would be possible. Hydrophobic/hydrophilic phase separation and clear ionic aggregate block morpology was confirmed in both triblock and diblock copolymer in AFM (atomic force microscopy), which may be highly related to their proton transport ability. A sulfonated BAB triblock copolymer membrane with an ion-exchange capacity (IEC) of 0.6 meq/g has a maximum ion conductivity of 40.3 mS/cm at $90^{\circ}C$ and 100% relative humidity.

PREPARATION, PHYSICAL PROPERTIES AND MODEL ANALYSIS OF LINEAR HOMOGENEOUS POLYURETHANE

  • Laporta, M.;Pegoraro, M.;Bianchi, F.;Consolati, G.;Zanderighi, L.
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 2003.07a
    • /
    • pp.81-85
    • /
    • 2003
  • PU block polymers are constituted by sequences of constitutional units CU which are : a diisocyanate T, a polyol or a polyamine V, an extensor E .Due to the CU different solubility parameters ,hard and soft micro domains are formed;they can aggregate into different phases. A linear PU can be described by two parameters R=T/N and $R_{E}$=(R-1)V/E.A stoichiometric model is proposed which gives the general formula of all the possible PU: X((TV)$_{k}$(TE)$_{n}$)$_{m}$X , where k and m can be calculated from the experimental molecular weights respectively of pre polymer and polymer and n= R-1.Physical properties depend on PU composition and on nature of CU. I.R. analysis is useful for discovering the hydrogen bonds location : DSC gives informations on the presence of the different phases .PALS analysis shows that nano cavities become tighter on increasing n. A series of particular Pus ,obtained from :TDI, a low molecular weight polyol, a cyclic extensor, at different R and RE was prepared and analysed. These PU are amorphous, monophasic and appear to be good candidates for membranes.nes.nes.

  • PDF

Effects of Filling Materials on the Physical Properties of Permeable Polymer Concrete (충전재가 투수성 폴리머 콘크리트의 물성에 미치는 영향)

  • Choi, Jae Jin;Yu, Hyeok Jin
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.2A
    • /
    • pp.177-184
    • /
    • 2010
  • This study was performed to determine the effects of filling materials on the physical properties of permeable polymer concrete. The filling materials were ground calcium carbonate, ground granulated blast furnace slag and fly ash. In this experiment, permeable polymer concrete mixtures with unsaturated polyester resin contents from 5 to 7 weight %, filler/resin ratio of 0~2.0 and crushed coarse aggregate passing 15 mm sieve were prepared and coefficient of permeability, void ratio, compressive strength and flexural strength were tested. As the test results, increase in the strength and decrease in the coefficient of permeability of the permeable polymer concrete were generally observed with increasing the resin contents and filler/resin ratio. The compressive and flexural strength of the permeable polymer concrete were in the range of 8.0 to 35.0 MPa and 2.0 to 9.0 MPa respectively and the highest strength was shown at the mixtures with 7 weight % unsaturated polyester resin contents, 2.0 ratio of filler/resin and filler of ground calcium carbonate. On the other hand, in the level of 20 MPa compressive strength, the mixtures with filler of fly ash was shown as the most economic permeable polymer concrete.

Suspension culture of anchorage-dependent cells in serum-free medium with biodegradable polymer nanospheres

  • Ryu, Ju-Hee;Choi, Cha-Yong;Kim, Byung-Soo
    • 한국생물공학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.171-173
    • /
    • 2003
  • Suspension culture in serum-free medium is important for the efficient large-scale culture of anchorage-dependent cells that are utilized to produce therapeutic recombinant protein(e.g., insulin, antibody, vaccine) and virus vector for therapeutic gene transfer. We developed a novel method for the suspension culture of anchorage-dependent animal cells in serum-free medium using biodegradable polymer nanospheres in this study. Poly(lactic-co-glycolic acid) (PLGA) polymer nanospheres (433nm in average diameter) were used to the culture of human embryonic kidney 293 cells in serum-free medium in stirred suspension bioreactors. The use of PLGA nanospheres promoted the aggregate formation and cell growth (3.8-fold versus 1.8-fold growth), compared to culture without nanospheres. Adaptation of the anchorage-dependent cells to suspension culture or serum-free medium is time-consuming and costly. In contrast, the culture method developed in our study does not require the adaptation process. This method may be useful for the large-scale suspension culture of various types of anchorage-dependent animal cells in serum-free medium.

  • PDF

Characteristics of Environment-Friendly Porous Polymer Concrete for Permeable Pavement

  • Kim, Young-Ik;Sung-Chan, Yong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.47 no.7
    • /
    • pp.25-33
    • /
    • 2005
  • This study was performed to develop environment-friendly porous polymer concrete utilizing recycled aggregates [RPPC] for permeable pavement of uniform quality with high permeability and flexural strength as well as excellent freezing and thawing resistance. The void ratios of RPPC are in the range of 15$\sim$$24\%$, showing the tendency that it is reduced to a great extent as the mixing ratio of the binder increases. The compressive and flexural strength of RPPC are in the range of 19$\sim$26 MPa and 6.2$\sim$7.4 MPa, respectively. Also, it shows a tendency to increase as the mixing ratio of the binder and filler increases. The permeability coefficients of RPPC are in the range of $6.3\times$$10_{-1}$$\sim$$1.5\times$$10_{-2}$cm/s. The flexural loads of RPPC are in the range of 18$\sim$32 KN. The weight reduction ratios obtained from the test for freezing and thawing resistance are in the range of 1.1$\sim$$2.4\%$ after 300 cycles of repeated freezing and thawing of the specimen for all mixes. The relative compressive strengths of RPPC after 300 cycles of freezing and thawing against the compressive strength before freezing and thawing test are in the range of 89$\sim$$96\%$.