• 제목/요약/키워드: polymer/inorganic hybrid

검색결과 118건 처리시간 0.022초

혼성복합재료의 계면 특성 분석 (Characterization of Interface in Hybrid Composites)

  • 하창식;안기열;조원재
    • 접착 및 계면
    • /
    • 제1권1호
    • /
    • pp.47-55
    • /
    • 2000
  • In this article, the characterization of the interface of hybrid composites was discussed. Interfacial interaction in organic/inorganic hybrid composites, especially silica-containing hybrids can be characterized by fluorescence spectroscopy, small angle X-ray scattering (SAXS), scanning electron microscopy (SEM), atomic force microscopy (AFM), and $^{29}Si$ NMR spectroscopy measurements.

  • PDF

Hybrid Solar Cells with Polymer/Fullerene Bulk Heterojunction Layers Containing in-situ Synthesized CdS Nanocrystals

  • Kwak, Eunjoo;Woo, Sungho;Kim, Hwajeong;Kim, Youngkyoo
    • Current Photovoltaic Research
    • /
    • 제2권4호
    • /
    • pp.152-156
    • /
    • 2014
  • We report hybrid solar cells fabricated with polymer/fullerene bulk heterojunction layers that contain inorganic nanocrystals synthesized by in-situ reaction in the presence of polymer chains. The inorganic (cadmium sulfide) nanocrystal ($CdS_{NC}$) was generated by the reaction of cadmium acetate and sulfur by varying the reaction time up to 30 min. The synthesized $CdS_{NC}$ showed a rectangular flake shape, while the size of $CdS_{NC}$ reached ca. 150 nm when the reaction time was 10 min. The performance of hybrid solar cells with $CdS_{NC}$ synthesized for 10 min was better than that of a control device, whereas poor performances were measured for other hybrid solar cells with $CdS_{NC}$ synthesized for more than 10 min.

Polymers and Inorganics: A Happy Marriage?

  • Wegner Gerhard;Demir Mustafa M.;Faatz Michael;Gorna Katazyrna;Munoz-Espi Rafael;Guillemet Baptiste;Grohn Franziska
    • Macromolecular Research
    • /
    • 제15권2호
    • /
    • pp.95-99
    • /
    • 2007
  • The most recent developments in two areas: (a) synthesis of inorganic particles with control over size and shape by polymer additives, and (b) synthesis of inorganic-polymer hybrid materials by bulk polymerization of blends of monomers with nanosized crystals are reviewed. The precipitations of inorganics, such as zinc oxide or calcium carbonate, in presence and under the control of bishydrophilic block or comb copolymers, are relevant to the field of Biomineralization. The application of surface modified latex particles, used as controlling agents, and the formation of hybrid crystals in which the latex is embedded in otherwise perfect crystals, are discussed. The formation of nano sized spheres of amorphous calcium carbonate, stabilized by surfactant-like polymers, is also discussed. Another method for the preparation of nanosized inorganic functional particles is the controlled pyrolysis of metal salt complexes of poly(acrylic acid), as demonstrated by the syntheses of lithium cobalt oxide and zinc/magnesium oxide. Bulk polymerization of methyl methacrylate blends, with for example, nanosized zinc oxide, revealed that the mechanisms of tree radical polymerization respond to the presence of these particles. The termination by radical-radical interaction and the gel effect are suppressed in favor of degenerative transfer, resulting in a polymer with enhanced thermal stability. The optical properties of the resulting polymer-particle blends are addressed based on the basic discussion of the miscibility of polymers and nanosized particles.

실세스키옥세인을 사용한 폴리스티렌 나노복합재료 (Organic-Inorganic Nanocomposites of Polystyrene with Polyhedral Oligomeric Silsesquioxane)

  • 김경민
    • 폴리머
    • /
    • 제30권5호
    • /
    • pp.380-384
    • /
    • 2006
  • 구조가 제어된 polyhedral oligomeric silsesquioxane (POSS)을 무기물로 폴리스티렌(PS)을 유기고분자로 사용하여 유기용매에 가역적으로 용해될 수 있는 새로운 유기-무기 나노복합재료를 합성하였다. 페닐기가 도입된 POSS와 PS와의 복합화에서는 다양한 중량비에서 투명하고, 균일한 복합재료를 얻을 수 있었다. 반면에 사이클로헥실기가 도입된 POSS와 PS와의 복합화에서는 불투명하구 불균일한 복합체를 얻었다. 따라서 페닐기가 도입된 POSS와 PS간의 물리적인 결합(physical bonding), 즉 aromatic(${\pi}-{\pi}$) 결합을 통하여 지금까지 유기물질과 무기물질을 복합화하기 위해 주로 사용되었던 화학결합(chemical bonding) 없이도 두 성분이 서로 균일하게 나노 크기로 혼성된 새로운 나노복합재료를 제조할 수 있었다. 또한 POSS를 이용해 얻어진 나노복합체는 기존의 솔-젤(sol-gel)방법으로 얻어진 복합체와는 달리, 용매에 다시 녹고 물리적인 결합을 이용했기 때문에 가역적으로 반복해서 복합재료를 만들 수 있는 장점을 가지고 있었다. 합성되어진 복합재료의 균일성과 분산성은 시차 주사열분석기(DSC)와 주사전자현미경(SEM) 및 X-선 회절분석기(XRD)에 의해 확인하였다.

리튬-황 전지용 폴리실세스키옥산 고분자 가교제로 제조된 겔 고분자 전해질의 전기화학적 특성 (Gel Polymer Electrolytes Derived from a Polysilsesquioxane Crosslinker for Lithium-Sulfur Batteries)

  • 김은지;이성수;이진홍
    • 공업화학
    • /
    • 제32권4호
    • /
    • pp.467-471
    • /
    • 2021
  • 본 연구에서는 가교성 작용기가 기능화된 사다리형 폴리실세스키옥산(LPMA64)을 합성하였고, 이를 액상 전해질의 열 가교 공정에 활용하여 유기-무기 하이브리드 겔 고분자 전해질을 제조하였다. 5 wt%의 낮은 LPMA64 고분자 가교제 함량으로도 전해질 내 네트워크 구조가 잘 발달하여, 우수한 형태 안정성과 높은 이온 전도도를 가지는 전해질의 제조가 가능하였다. 하이브리드 겔 고분자 전해질이 적용된 리튬-황 전지는 안정적인 율속과 장수명 성능 및 높은 쿨롱 효율을 나타냈으며, 이는 완화된 리튬 폴리설파이드 셔틀 현상에 기인했다. 본 연구결과는 제조된 유기-무기 하이브리드 겔 고분자 전해질이 리튬-황 전지 응용에 유망한 전해질임을 보여주었다.

Molecular Layer Deposition of Titanium Nitride Cross-linked Benzene Using Titaniumchloride and 1,4-Phenylenediamine

  • 한규석;양다송;김세준;성명모
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제42회 동계 정기 학술대회 초록집
    • /
    • pp.305-305
    • /
    • 2012
  • The organic-inorganic hybrid polymer thin films were deposited using the gas phase method which known as molecular layer deposition (MLD). Titaniumchloride (TiCl4) and 1,4-phenylenediamine (PD) were used as monomers to deposit hybrid polymer. Self-terminating nature of TiCl4 and PD reaction were demonstrated by growth rate saturation versus precursors dosing time. Infrared spectroscopic and X-ray photoelectron spectroscopy were employed to determine the chemical composition and state of hybrid polymer thin films. Layer by layer growth was showed by increasing UV-VIS absorption peak of hybrid polymer thin films.

  • PDF

Ordered Hybrid Nanomaterials from Self-Assembled Polymeric Building Blocks

  • Kim, Dong-Ha
    • 한국고분자학회:학술대회논문집
    • /
    • 한국고분자학회 2006년도 IUPAC International Symposium on Advanced Polymers for Emerging Technologies
    • /
    • pp.309-309
    • /
    • 2006
  • Latest developments on hybrid nanostructured materials fabricated by applying self-assembly strategies on organic/inorganic nanotemplates are discussed. Within this frame, numerous functional nanomaterials including arrays of composite metal/semiconductor nanoparticles, planar waveguides and functional multilayer thin films are generated using self-assembled polymers as templates or building blocks. In particular, surface plasmon resonance based optical sensing is employed to investigate nanofabrication processes occurring in nanoscale dimention. We also suggest unprecedented pathways to hybrid supramolecular multilayer nanoarchitectures in 1D or 2D geometry via layer-by-layer self-assembly.

  • PDF

유기물과 유무기 혼합 폴리머 게이트 절연체를 사용한 유기 박막 트랜지스터의 특성 (Characteristics of Organic Thin Film Transistors with Organic and Organic-inorganic Hybrid Polymer Gate Dielectric)

  • 배인섭;임하영;조수헌;문송희;최원석
    • 한국전기전자재료학회논문지
    • /
    • 제22권12호
    • /
    • pp.1009-1013
    • /
    • 2009
  • In this study, we have been synthesized the dielectric layer using pure organic and organic-inorganic hybrid precursor on flexible substrate for improving of the organic thin film transistors (OTFTs) and, design and fabrication of organic thin-film transistors (OTFTs) using small-molecule organic semiconductors with pentacene as the active layer with record device performance. In this work OTFT test structures fabricated on polymerized substrates were utilized to provide a convenient substrate, gate contact, and gate insulator for the processing and characterization of organic materials and their transistors. By an adhesion development between gate metal and PI substrate, a PI film was treated using $O_2$ and $N_2$ gas. The best peel strength of PI film is 109.07 gf/mm. Also, we have studied the electric characteristics of pentacene field-effect transistors with the polymer gate-dielectrics such as cyclohexane and hybrid (cyclohexane+TEOS). The transistors with cyclohexane gate-dielectric has higher field-effect mobility, $\mu_{FET}=0.84\;cm^2/v_s$, and smaller threshold voltage, $V_T=-6.8\;V$, compared with the transistor with hybrid gate-dielectric.

Synthesis of o-Xylene-Organosilicon Hybrid Polymer and Its Optical Properties

  • Choi, Jin-Kyu;Jeong, Hyun-Dam
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권2호
    • /
    • pp.515-518
    • /
    • 2013
  • We present synthesis of a new kind of organic-inorganic hybrid polymer, poly xylene-hexamethyltrisiloxane hybrid (PXS) by a new synthetic way from o-xylene and 1,1,3,3,5,5-hexamethyltrisiloxane. The merged molecular structure of the two monomeric components for the PXS polymer was confirmed by $^{13}C$- and $^1H$-NMR, and FT-IR. Its optical absorption and emission properties were investigated by UV-vis absorption and photoluminescence (PL) spectroscopy. The PXS exhibits absorption at 265 nm which is the same with the o-xylene but tailing up to nearly 400 nm, which is maybe related the polymeric structure of the PXS. For the PL investigation, the PXS shows red-shift of the peak from 288 nm (o-xylene) to 372 nm in the case of excitation at 265 nm, at which both PXS and o-xylene have sufficiently high absorption for excitation. When 325-nm laser is used for excitation, the PXS shows a broader peak at 395 nm compared to the excitation at 265 nm and the o-xylene shows no luminescence probably due to the lack of absorption at 325 nm.

Charge Carrier Photogeneration and Hole Transport Properties of Blends of a $\pi$-Conjugated Polymer and an Organic-Inorganic Hybrid Material

  • Han, Jung-Wook;An, Jong-Deok;Jana, R.N.;Jung, Kyung-Na;Do, Jung-Hwan;Pyo, Seung-Moon;Im, Chan
    • Macromolecular Research
    • /
    • 제17권11호
    • /
    • pp.894-900
    • /
    • 2009
  • This study examined the charge carrier photogeneration and hole transport properties of blends of poly (9-vinylcarbazole) (PVK), $\pi$-conjugated polymer, with different weight proportions (0~29.4 wt%) of (PEA)$VOPO_4{\cdot}H_2O$ (PEA: phenethylammonium cation), a novel organic-inorganic hybrid material, using IR, UV-Vis, and energy dispersive spectroscopy (EDS), thermogravimetric analysis (TGA), steady state photocurrent (SSPC) measurement, and atomic force microscopy (AFM). The SSPC measurements showed that the photocurrent of PVK was reduced by approximately three orders of magnitude by the incorporation of a small amount (~12.5 wt%) of (PEA) $VOPO_4{\cdot}H_2O$, suggesting that hole transport occurred through the PVK carbazole groups, whereas a reverse trend was observed at high proportions (>12.5 wt%) of (PEA)$VOPO_4{\cdot}H_2O$, suggesting that transport occurred via (PEA)$VOPO_4{\cdot}H_2O$ molecules. The transition to a trap-controlled hopping mechanism was explained by the difference in ionization potential and electron affinity of the two compounds as well as the formation of charge percolation threshold pathways.