• Title/Summary/Keyword: polyketides

Search Result 42, Processing Time 0.051 seconds

Chinoketides A and B, Two New Antimicrobial Polyketides from the Endophytes of Distylium chinense with the "Black-Box" Co-culture Method

  • Lv, Meng-Meng;Tan, Ming-Hui;Lu, Li-Wen;Zhang, Rong-Hua;Guo, Zhi-Yong;Liu, Cheng-Xiong;Yang, Jin;Zou, Kun;Proksch, Peter
    • Natural Product Sciences
    • /
    • v.24 no.3
    • /
    • pp.159-163
    • /
    • 2018
  • Two new polyketides, chinoketides A and B (1 - 2) with a known compound xylarphthalide A (3), were isolated from the solid medium of the endophytes from the leaves of the relic plant Distylium chinense with the "black-box" co-culture method, and the structures of two new compounds were elucidated by NMR, MS and CD spectra. And the absolute configurations of chinoketides A (1) and B (2) were determined as 2R,3R,8S and 5R,6S by calculating their ECD spectra to compare with the experimental CD spectra. Finally, the antimicrobial activities were evaluated to Erwinia carotovora sub sp. Carotovora (Jones) Bersey et al, and the results showed that compounds 1 - 3 displayed the antimicrobial activities with MIC value at 20.5, 30.4 and $10.2{\mu}g/mL$.

Premature Release of Polyketide Intermediates by Hybrid Polyketide Synthase in Amycolatopsis mediterranei S699

  • Hong, Jay-Sung-Joong;Choi, Cha-Yong;Yoo, Yeo-Joon
    • Journal of Microbiology and Biotechnology
    • /
    • v.13 no.4
    • /
    • pp.613-619
    • /
    • 2003
  • The polyketide backbone of rifamycin B is assembled by the type I rifamycin polyketide synthase (PKS) encoded by the rifA-rifE genes. In order to produce novel analogs of rifamycin via engineering of the PKS genes, inactivation of the ${\beta}-ketoacyl:acyl$ carrier protein reductase (KR) domain in module 8 of rifD, by site-specific mutagenesis of the NADPH binding site, was attempted. Module 8 contains a nonfunctional dehydratase (DH) domain and a functional KR domain that is involved in the reduction of the ${\beta}-carbonyl$ group, resulting in the C-21 hydroxyl of rifamycin B. This mutant strain produced linear polyketides, from tetraketide to octaketide, which were also produced by a rifD-disruption mutant as a consequence of premature termination of the polyketide assembly. Another attempt to replace the DH domain of module 7, which has been considered nonfunctional, with a functional homolog derived from module 7 of rapamycin-producing PKS also resulted in the production of linear polyketides, including the heptaketide intermediate and its precursors. Premature release of the carbon chain assembly intermediates is an unusual property of the rifamycin PKS. that is not seen in other PKSs such as the erythromycin PKS.

Genenation of structural diversity in polyketides by combinatorial biosynthesis of polyketides: Part I. Generation of multiple bioactive macrolides by hybrid modular polyketide synthases in Streptomyces venezuelae, Part II. Production of novel rifamycins by combinatorial biosynthesis

  • Yoon, Yeo-Joon
    • Proceedings of the Korean Society for Applied Microbiology Conference
    • /
    • 2002.10a
    • /
    • pp.18-25
    • /
    • 2002
  • The pikromycin biosynthetic system in Streptomyces venezuleae is unique for its ability to produce two groups of antibiotics that include the 12-membered ring macrolides methymycin and neomethymycin, and the 14-membered ring macrolides narbomycin and pikromycin. The metabolic pathway also contains two post polyketide-modification enzymes, a glycosyltransferase and P450 hydroxylase that have unusually broad substrate specificities. In order to explore further the substrate flexibility of these enzymes a series of hybrid polyketide synthases were constructed and their metabolic products characterized. The plasmid-based replacement of the multifunctional protein subunits of the pikromycin PKS in S. venezuelae by the corresponding subunits from heterologous modular PKSs resulted in recombinant strains that produce both 12- and 14-membered ring macrolactones with predicted structural alterations. In all cases, novel macrolactones were produced and further modified by the DesVII glycosyltransferase and PikC hydroxylase leading to biologically active macrolide structures. These results demonstrate that hybrid PKSs in S. venezuelae can produce a multiplicity of new macrolactones that are modified further by the highly flexible DesVII glycosyltransferase and PikC hydroxylase tailoring enzymes. This work demonstrates the unique capacity of the S. venezuelae pikromycin pathway to expand the toolbox of combinatorial biosynthesis and to accelerate the creation of novel biologically active natural products. The polyketide backbone of rifamycin B is assembled through successive condensation and ${\beta}$-carbonyl processing of the extender units by the modular rifamycin PKS. The eighth module, in the RifD protein, contains nonfunctional DH domain and functional KR domain, which specify the reduction of the ${\beta}$-carbonyl group resulting in the C-21 bydroxyl of rifamycin B. A four amino acid substitution and one amino acid deletion were introduced in the putative NADPH binding motif in the proposed KR domain encoded by rifD. This strategy of mutation was based on the amino acid sequences of the corresponding motif of the KR domain of module 3 in the RifA protein, which is believed dysfunctional, so as to introduce a minimum alteration and retain the reading frame intact, yet ensure loss of function. The resulting strain produces linear polyketides, from tetraketide to octaketide, which are also produced by a rifD disrupted mutant as a consequence of premature termination of polyketide assembly. Much of the structural diversity within the polyketide superfamily of natural products is due to the ability of PKSs to vary the reduction level of every other alternate carbon atom in the backbone. Thus, the ability to introduce heterologous reductive segments such as ketoreductase (KR), dehydratase (DH), and enoylreductase (ER) into modules that naturally lack these activities would increase the power of the combinatorial biosynthetic toolbox. The dehydratase domain of module 7 of the rifamycin PKS, which is predicted to be nonfunctional in view of the sequence of the apparent active site, was replaced with its functional homolog from module 7 of rapamycin-producing polyketide synthase. The resulting mutant strain behaved like a rifC disrupted mutant, i.e., it accumulated the heptaketide intermediate and its precursors. This result points out a major difficulty we have encountered with all the Amycolatopsis mediterranei strain containing hybrid polyketide synthases: all the engineered strains prepared so far accumulate a plethora of products derived from the polyketide chain assembly intermediates as major products instead of just analogs of rifamycin B or its ansamycin precursors.

  • PDF

Computational Approach for the Analysis of Post-PKS Glycosylation Step

  • Kim, Ki-Bong;Park, Kie-Jung
    • Genomics & Informatics
    • /
    • v.6 no.4
    • /
    • pp.223-226
    • /
    • 2008
  • We introduce a computational approach for analysis of glycosylation in Post-PKS tailoring steps. It is a computational method to predict the deoxysugar biosynthesis unit pathway and the substrate specificity of glycosyltransferases involved in the glycosylation of polyketides. In this work, a directed and weighted graph is introduced to represent and predict the deoxysugar biosynthesis unit pathway. In addition, a homology based gene clustering method is used to predict the substrate specificity of glycosyltransferases. It is useful for the rational design of polyketide natural products, which leads to in silico drug discovery.

Combinatorial Biosynthesis of Polyketide Antibiotics Doxorubicin and Rubradirin

  • Hong, Young-Soo;Lee, Jung-Joon;Sohng, Jae-Kyung;Yoo, Jin-Chul;Kim, Chun-Gyu
    • Proceedings of the PSK Conference
    • /
    • 2003.10a
    • /
    • pp.79-80
    • /
    • 2003
  • A lot of polyketide antibiotics have been isolated from natural sources like microorganism, fungi and plant. The polyketide natural products have biologically and medically important activities, including antibacterial, anticancer, antiparasitic, and immunosuppressant properties. The diversified activities of polyketides are originated from their structural variety of which have been took advantage by several research groups for development of new drugs. (omitted)

  • PDF

A Large Genomic Deletion in Gibberella zeae Causes a Defect in the Production of Two Polyketides but not in Sexual Development or Virulence

  • Lee Sun-Hee;Kim Hee-Kyoung;Hong Sae-Yeon;Lee Yin-Won;Yun Sung-Hwan
    • The Plant Pathology Journal
    • /
    • v.22 no.3
    • /
    • pp.215-221
    • /
    • 2006
  • Gibberella zeae (anamorph: Fusarium graminearum) is an important pathogen of cereal crops. This fungus produces a broad range of secondary metabolites, including polyketides such as aurofusarin (a red pigment) and zearalenone (an estrogenic mycotoxin), which are important mycological characteristics of this species. A screen of G. zeae insertional mutants, generated using a restriction enzyme-mediated integration (REMI) procedure, led to the isolation of a mutant (Z43R606) that produced neither aurofusarin nor zearalenone yet showed normal female fertility and virulence on host plants. Outcrossing analysis confirmed that both the albino and zearalenone-deficient mutations are linked to the insertional vector in Z43R606. Molecular characterization of Z43R606 revealed a deletion of at least 220 kb of the genome at the vector insertion site, including the gene clusters required for the biosynthesis of aurofusarin and zearalenone, respectively. A re-creation of the insertional event of Z43R606 in the wild-type strain demonstrated that the 220-kb deletion is responsible for the phenotypic changes in Z43R606 and that a large region of genomic DNA can be efficiently deleted in G. zeae by double homologous recombination. The results showed that 52 putative genes located in the deleted genomic region are not essential for phenotypes other than the production of both aurofusarin and zearalenone. This is the first report of the molecular characterization of a large genomic deletion in G. zeae mediated by the REMI procedure.

Discovery and Molecular Engineering of Sugar-containing Natural Product Biosynthetic Pathways in Actinomycetes

  • Oh, Tae-Jin;Mo, Sang-Joon;Yoon, Yeo-Joon;Sohng, Jae-Kyung
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.12
    • /
    • pp.1909-1921
    • /
    • 2007
  • Significant progress has recently been made concerning the engineering of deoxysugar biosynthesis. The biosynthetic gene clusters of several deoxysugars from various polyketides and aminoglycosides-producing microorganisms have been cloned and studied. This review introduces the biosynthetic pathways of several deoxysugars and the generation of novel hybrid macrolide antibiotics via the coexpression of deoxysugar biosynthetic gene cassettes and the substrate-flexible glycosyltransferases in a host organism as well as the production of TDP-deoxysugar derivatives via one-pot enzymatic reactions with the identified enzymes. These recent developments in the engineering of deoxysugars biosynthesis may pave the way to create novel secondary metabolites with potential biological activities.