• Title/Summary/Keyword: polyethyleneimine (PEI)

Search Result 57, Processing Time 0.017 seconds

Research about Chemical-Biological Protection Capability of Selectively Permeable Membrane Materials Based on Polyvinyl Alcohol (폴리비닐알코올 기반 선택투과막 재료의 화생방호성능 연구)

  • Kang, Jae-Sung;Seo, Hyeon-Kwan;Kwon, Tae-Geun;Park, Hyen-Bae;Lee, Hae-Wan
    • Membrane Journal
    • /
    • v.23 no.3
    • /
    • pp.237-244
    • /
    • 2013
  • We fabricated several composite membranes with selectively permeable performance designed to facilitate water vapor transport and resist DMMP vapor permeation. Materials for selective permeable membrane were based on polyvinyl alcohol and functional polymer containing basic functional group. With these materials, we characterized selectively permeable performance to identify next-generation material with chemical-biological protective capability. Results showed that polyvinyl alcohol (PVA)/polyethyleneimine (PEI) materials possessed performance with superior water vapor permeation ($2,200{\sim}2,900g/m^2/day$) and protective capability against DMMP vapor ($47g/m^2/day$).

A Study on Glycoside Synthesis Using Alginate-enclosed Microspheres (Alginate-enclosed Microspheres를 이용한 배당체 합성에 관한 연구)

  • 김해성;김우식
    • KSBB Journal
    • /
    • v.8 no.4
    • /
    • pp.320-327
    • /
    • 1993
  • Latex microspheres of styrene/acryl copolymer with acrylamide functional group were used for the stable covalent immobilization of an enzyme applicable for enzymatic synthesis of glycoside. The latex microspheres were coated with polyethyleneimine to establish structural and functional properties relevant to the covalent Immobilization with a high retention of activity. Polythyleneimine-coated microspheres satisfactorily immobilized the invertase for methyl fructoside synthesis, and model reaction were formed into alginate-enclosed microspheres biocatalyst. Using the alginate-enclosed microspheres biocatalyst, the yield of model glycoside was obtained as high as 52.2% at concentration of aqueous 30%(v/v) methanol and 0.291mo1/1 sucrose solution with 2U/ml of activity. The present study showed that the latex microspheres were successfully applied to enzymatic synthesis of glycoside.

  • PDF

Effects of the gold nanoparticles including different thiol functional groups on the performances of glucose-oxidase-based glucose sensing devices

  • Christwardana, Marcelinus;Chung, Yongjin;Tannia, Daniel Chris;Kwon, Yongchai
    • Korean Journal of Chemical Engineering
    • /
    • v.35 no.12
    • /
    • pp.2421-2429
    • /
    • 2018
  • Thiol-based self-assembled anchor linked to glucose oxidase (GOx) and gold nanoparticle (GNP) cluster is suggested to enhance the performance of glucose biosensor. By the adoption of thiol-based anchors, the activity of biocatalyst consisting of GOx, GNP, polyethyleneimine (PEI) and carbon nanotube (CNT) is improved because they play a crucial role in preventing the leaching out of GOx. They also promote electron collection and transfer, and this is due to a strong hydrophobic interaction between the active site of GOx and the aromatic ring of anchor, while the effect is optimized with the use of thiophenol anchor due to its simple configuration. Based on that, it is quantified that by the adoption of thiophenol as anchor, the current density of flavin adenine dinucleotide (FAD) redox reaction increases about 42%, electron transfer rate constant ($k_s$) is $9.1{\pm}0.1s^{-1}$ and the value is 26% higher than that of catalyst that does not use the anchor structure.

Improved Copper Ion Recovery Efficiency through Surface Modification of Membranes in the Electrodialysis/Solvent Extraction Process (전기투석/용매추출 공정에서 멤브레인 표면 개질을 통한 구리 이온의 회수 효율 향상)

  • Joongwon, Park;Rina, Kim;Hyunju, Lee;Min-seuk, Kim;Hiesang, Sohn
    • Membrane Journal
    • /
    • v.32 no.6
    • /
    • pp.486-495
    • /
    • 2022
  • This study presents the improved recovery efficiency of rare metal ions through the modified separation membrane wettability and hydrogen ion permeation in the anion exchange membrane (AEM) under the recovery process of combined electrodialysis and solvent extraction. Specifically, the wettability of the separator was enhanced by hydrophilic modification on one separator surface through polydopamine (PDA) and lipophilic modification on the other surface through SiO2 or graphene oxide (GO). In addition, the modified surface of AEM with polyethyleneimine (PEI), PDA, poly(vinylidene fluoride) (PVDF), etc. reduces the water uptake and modify the pore structure for proton ions generation. The suppressed transport resulted in the reduced hydrogen ion permeation. In the characterization, the surface morphology, chemical properties and composition of membrane or AEM were analyzed with Scanning Electron Microscopy (SEM) and Fourier Transform-Infrared Spectroscopy (FT-IR). Based on the analyses, improved extraction and stripping and hydrogen ion transport inhibition were demonstrated for the copper ion recovery system.

Formation of Ti3SiC2 Interphase of SiC Fiber by Electrophoretic Deposition Method

  • Lee, Hyeon-Geun;Kim, Daejong;Jeong, Yeon Su;Park, Ji Yeon;Kim, Weon-Ju
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.1
    • /
    • pp.87-92
    • /
    • 2016
  • Due to its stability at high temperature and its layered structure, $Ti_3SiC_2$ MAX phase was considered to the interphase of $SiC_f/SiC$ composite. In this study, $Ti_3SiC_2$ MAX phase powder was deposited on SiC fiber via the electrophoretic deposition (EPD) method. The Zeta potential of the $Ti_3SiC_2$ suspension with and without polyethyleneimine as a dispersant was measured to determine the conditions of the EPD experiments. Using a suspension with 0.03 wt.% ball milled $Ti_3SiC_2$ powder and 0.3 wt.% PEI, $Ti_3SiC_2$ MAX phase was successfully coated on SiC fiber with an EPD voltage of 10 V for 2 h. Most of the coated $Ti_3SiC_2$ powders are composed of spherical particles. Part of the $Ti_3SiC_2$ powders that are platelet shaped are oriented parallel to the SiC fiber surface. From these results we expect that $Ti_3SiC_2$ can be applied to the interphase of $SiC_f/SiC$ composites.

Surface Modification of High Energetic Materials by Molecular Self-assembly (자기조립법을 이용한 고에너지물질의 표면개질 연구)

  • Kim, Ja-Young;Jeong, WonBok;Shin, Chae-Ho;Kim, Jin-Seok;Lee, Keundeuk;Lee, Kibong
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.20 no.2
    • /
    • pp.18-23
    • /
    • 2016
  • Self-assembly of organic molecules is formed spontaneously on surfaces by electrostatic interaction with substrate. This research has shown that the self-assembly improves safety and handling tractability of high-energetic materials (HEMs). According to the recent study, control of the specific crystal size for reducing the internal defects is mightily important, because the internal defects are a factor in unstability of HEMs. In turn, we performed self-assembly of organic molecules and HEMs by using nano-sized HEMs, which were produced by drowing-out or milling/crystallization. Surface modification efficiency was decided by size distribution, zeta-potential, friction sensitivity and electrostatic charge.

Electrical and Mechanical Properties of Cu/Carbon Nano-Particle Hybrids Composites by Cathodic Electrophoresis (음극 전기영동법에 의해 제조된 구리/탄소 나노입자 하이브리드 복합재료의 전기적/기계적 특성 평가)

  • Lee, Wonoh;Lee, Sang-Bok;Choi, Oyoung;Yi, Jin-Woo;Byun, Joon-Hyung
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.12
    • /
    • pp.1130-1135
    • /
    • 2010
  • Cu/carbon nano-particle hybrids were fabricated through the cathodic electrophoretic deposition (EPD) process. CNT and CNF nano-particles were modified to give positive charges by polyethyleneimine (PEI) treatment before depositing them on the substrate. Since a Cu plate was used as an anode in the EPD process, Cu particles were also deposited along with the carbon nano-particles. Experimental observation showed the nano-hybrids constructed a novel formicary-like nano-structure which is strong and highly conductive. Utilizing the hybrids, carbon fiber composites were manufactured, and their electrical conductivity and interlaminar shear strength were measured. In addition, the deposition morphology and failure surface were examined by SEM observations. Results demonstrated that the electrical conductivities in the through-the-thickness direction and the interlaminar shear strength significantly increased by 350~2100% and 14%, respectively.