• Title/Summary/Keyword: polyethylene powder

Search Result 113, Processing Time 0.026 seconds

Powder Injection Molding of Alumina Parts Using a Binder System Based in Paraffin Wax and High Density Polyethylene

  • Thomas-Vielma, P.;Cervera, A.;Levenfeld, B.;Varez, A.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.207-208
    • /
    • 2006
  • In this experimental work, the development of a multicomponent binder system based on high density polyethylene (HDPE) and paraffin wax for Powder Injection Molding of Alumina $(Al_2O_3)$ parts was carried out. The optimum composition of the injection mixture was established through mixing torque measurements and a rheological study. The maximum powder loading was 58 vol%. The miscibility of organic components and the optimum injection temperature was evaluated by thermal characterization of binder and feedstock. The thermal debinding cycle was developed on the basis of thermogravimetrical analysis of the binder. After sintering the densities achieved were closed to 98% of the theoretical one.

  • PDF

Comparison of vacuum metal deposition (VMD) and powder method for developing latent fingerprint on plastic envelope surface (플라스틱 봉투 표면에서 지문을 현출하기 위한 Vacuum Metal Deposition (VMD)과 분말법의 비교)

  • Kim, Chaewon;Lee, Narae;Kim, Taewon;Yu, Jeseol
    • Analytical Science and Technology
    • /
    • v.33 no.3
    • /
    • pp.159-166
    • /
    • 2020
  • Vacuum metal deposition (VMD) is effective to develop latent fingerprints on non-porous and semi-porous surfaces. VMD can be used in cases when fingerprints that can not be developed by generalized techniques or deposited on difficult surfaces. The recommended surfaces for VMD techniques include vinyl, polymer bills, magnetic coated tickets, etc. In this study, the minimum amount of gold input was explored for developing fingerprints from at least 12 hours to up to 28 days after deposit fingerprint on the pink high density polyethylene envelope (HDPE) and low density polyethylene envelope (LDPE), which are mainly used as delivery envelopes. And the results were compared with the effects of black powder and fluorescent powder. In addition, delivery envelopes used for delivery were collected, then classified as HDPE and LDPE and pseudo-operation test was performed. As a result, VMD method developed good quality of fingerprints.

Manufacture of Short Fiber Prepreg using Electroflocking (Electroflocking을 이용한 단섬유 프리프레그 제조에 관한 연구)

  • Lim, S.H.;Lee, S.S.;Pak, M.;Kim, J.K.;Choe, C.R.;Kwon, S.J.
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.10a
    • /
    • pp.288-291
    • /
    • 2002
  • The carbon fiber or glass fiber reinforced prepregs were manufactured using electrostatic flocking technology. The powder of high density polyethylene was used as a matrix. The base film of polyethylene was prepared using a fluidized bed of polyethylene powder under the high electric field. We obtained HDPE film with uniform thickness of minimum $80\mu\textrm{m}$. And the fibers were aligned on the molten HDPE film by the electroflocking process. The short fibers with 1mm were easily electrically charged and aligned under the high electric field. The carbon fibers with high conductivity were elasily electrically charged than the glass fibers with low conductivity. So lower electric field was needed for the carbon fibers.

  • PDF

Effect of Polymer Content on Synthesis Process and Microstructure of Alumina-Zirconia Composite (알루미나-지르코니아 복합체의 제조공정 및 미세구조에 미치는 폴리머 첨가의 영향)

  • 이상진;권명도;이충효;조경식
    • Journal of Powder Materials
    • /
    • v.10 no.5
    • /
    • pp.310-317
    • /
    • 2003
  • Two-component ceramic (alumina-zirconia) composites were fabricated by a soft-solution process in which polyethylene glycol (PEG) was used as a polymeric carrier. Metal salts and PEG were dissolved in ethyl alcohol without any precipitation in 1:1 volume ratio of alumina and zirconia. In the non-aqueous system, the flammable solvent made explosive, exothermic reaction during drying process. The reaction resulted in formation of volume expanded, porous precursor powders by a vigorous decomposition of organic components in the precursor sol. The PEG content affected the grain size of sintered composites as well as the morphology of precursor powders. The difference of microstructure in sintered composite was attribute to the solubility and homogeneity of metal cations in precursor sol. At the optimum amount of the PEG polymer, the metal ions were dispersed effectively in solution and a homogeneous polymeric network was formed. It made less agglomerated particles in the precursor sol and affected on uniform grain size in sintered composite.

Physical and mechanical properties of cement mortar with LLDPE powder and PET fiber wastes

  • Benimam, Samir;Bentchikou, Mohamed;Debieb, Farid;Kenai, Said;Guendouz, Mohamed
    • Advances in concrete construction
    • /
    • v.12 no.6
    • /
    • pp.461-467
    • /
    • 2021
  • Polyethylene-terephthalate (PET) from bottle waste and linear low-density polyethylene (LLDPE) from barrels and tanks waste are widely available and need to be recycled. Recycling them in concrete and mortar is an alternative solution for their disposal. In this study various quantities of sand (5%, 10%, 15% and 20%) were substituted by powder from LLDPE waste. In addition, PET waste fibers (corrugated, straight) were added to the mortar with different percentages (0.5%, 1%, 1.5% and 2%) of cement mass. This paper evaluate the mechanical and physical properties of the composites in fresh (workability, air content and density) and hardened state (compressive and flexural strength, water absorption and total shrinkage). From the experimental results, it can be concluded that the strengthening in tensile of the mortar with plastic waste corrugated fibers is improved. Other important results are that the water absorption and the density rate are less than that of the ordinary mortar.

Pyrolysis Characteristic and Ignition Energy of High-Density Polyethylene Powder (고밀도 폴리에틸렌 분진의 열분해성과 착화에너지)

  • Han, Ou-Sup;Lee, Jung-Suk
    • Journal of the Korean Institute of Gas
    • /
    • v.18 no.3
    • /
    • pp.31-37
    • /
    • 2014
  • The aim of this work is to provide new experimental data on the pyrolysis characteristics and the minimum ignition energy (MIE) by using the same high-density polyethylene (HDPE) powder in domestic HDPE dust explosion accident. To evaluate the explosion sensitivity of HDPE, thermo-gravimetric analysis (TGA), differential scanning calorimeter (DSC) and MIE apparatus (MIKE-3, K$\ddot{u}$hner) was conducted. The measurements showed the volume median diameter of $61.6{\mu}m$ but the particle number density of 98 % in the range $0.4{\sim}4{\mu}m$. The ignition temperature from the results of TGA and DSC in HDPE dust layers was observed in the range of $380{\sim}490^{\circ}C$. MIE was measured under 1 mJ in the HDPE dust concentration of $1200{\sim}1800g/m^3$, it was found that the ratio of particle number density in the range $0.4{\sim}4{\mu}m$ was very high (98%).

Packaging and Storage of kimchi with Polyethylene Film Contained Raw Ore (생광석 함유 폴리에틸렌 필름을 사용한 김치의 포장저장)

  • 김순동;김미향;김미경
    • Food Science and Preservation
    • /
    • v.5 no.4
    • /
    • pp.355-362
    • /
    • 1998
  • Polyethylene films contained 0, 10, 20, 30 and 40% of raw-ore powder(PERO) were prepared. The characteristics feature of the film and the powder were investigated in order to use packaging material for kimchi quality. Kimchi was packaged in the PERO bass md stored at 10$^{\circ}C$. The kimchi was examined for a pH, acidity, number of total microbe and lactic acid bacteria, E. coli, color values and sensory evaluation. The ore powder at 20$^{\circ}C$ produced infrared rays at 800-1100nm. The growth of E. coli md Staphylococcus aureus was extremely inhibited in the EMB and nutrient broth containing 10% of raw-ore powder but, that of lactobacillus plantarum and Leuconostoc mesenteriodes was slightly promoted in MRS broth containing 1%. The ripening by pH and acidity was slightly accelerated in kimchi in PERO bag(PERO-kimchi) compared to control kimchi but the maintenance of ripened-kimchi taste was prolonged in PERO-kimchi. The number of lactic acid bacteria of PERO-kimchi was more numerous than that of contol sample but that of E. coli wag exremely legs. The color L* values of PERO-kimchi was lower than control but a* and b* values were higher. Sensory evaluation of PERO-kimchi was higher score than control sample in crispness and overall taste about 10 to 20% of raw-ore contents for kimchi-packaging material was desirable.

  • PDF

Dielectric Properties of Carbon Black-Filled Polyethylene Matrix Composites (카본블랙 충진 Polyethylene Matrix Composites의 유전 특성)

  • Shin, Soon-Gi
    • Korean Journal of Materials Research
    • /
    • v.21 no.4
    • /
    • pp.196-201
    • /
    • 2011
  • It is known that the relative dielectric constant of insulating polyethylene matrix composites with conducting materials (such as carbon black and metal powder) increases as the conducting material content increases below the percolation threshold. Below the percolation threshold, dielectric properties show an ohmic behavior and their value is almost the same as that of the matrix. The change is very small, but its origin is not clear. In this paper, the dielectric properties of carbon black-filled polyethylene matrix composites are studied based on the effect medium approximation theory. Although there is a significant amount of literature on the calculation based on the theory of changing the parameters, an overall discussion taking into account the theory is required in order to explain the dielectric properties of the composites. Changes of dielectric properties and the temperature dependence of dielectric properties of the composites made of carbon particle and polyethylene below the percolation threshold for the volume fraction of carbon black have been discussed based on the theory. Above the percolation threshold, the composites are satisfied with the universal law of conductivity, whereas below the percolation threshold, they give the critical exponent of s = 1 for dielectric constant. The rate at which the percentages of both the dielectric constant and the dielectric loss factor for temperature increases with more volume fraction below the percolation threshold.