• Title/Summary/Keyword: polyester resin

Search Result 245, Processing Time 0.026 seconds

A Study on Material Characterization of SMC (SMC의 물성치 평가에 관한 연구)

  • 정진호;한영원;임용택
    • Transactions of Materials Processing
    • /
    • v.4 no.3
    • /
    • pp.245-256
    • /
    • 1995
  • SMC(Sheet Molding Compound), a thermoset composite material which consists of unsaturated polyester resin, fiberglass strands, fillers, and various chemical additives for curing agent, has been widely used in fabrication of structural components. The mechanical properties of molded SMS parts are strongly dependent on material flow results during compression molding process, while such flow in molds is affected by material characteristics. For numerical simulation of SMC molding process, estimation of material property of SMC must be accomplished. In this study, flow resistance of SMC was estimated through a simple compression test using a lubricant with grease oil under the constant strain rate condition at various temperatures and the result was compared with other material data available in the literature. The accuracy of the experimentally determined flow resistance was tested by finite element analyses of compression molding of SMC. Simulation results were compared with experimental results under the plane strain condition.

  • PDF

Evaluation for Characteristics of Lightweight Polymer Concrete (경량 폴리머 콘크리트의 특성연구)

  • 채경희;최예환;연규선;이윤수
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.43 no.4
    • /
    • pp.106-112
    • /
    • 2001
  • Recent advance in material technology has accelerated the development of high strength concrete using lightweight artificial aggregates. The lightweight concrete has many advantages that the reduction of dead loads and the increase in load capacity can offer. In this study the lightweight polymer concrete using unsaturated polyester resin and lightweight aggregate were prepared and tested for testing the physical and the mechanical properties. The compressive strengths of lightweight polymer concretes with apparent specific gravity for 1.32 to 1.78 were 250 to 470 kfg/cm$^2$ and flexural strengths were measured to be in the range of 1/3-1/4 of compressive strength.

  • PDF

Development of Polymer Mortar Protection Block for Erosion Control Works (폴리머 모르터를 이용한 사면보호재의 개발)

  • Ryu, Neung-Hwan;Yeon, Kyu-Seok;Kim, Ki-Sung;Lee, Youn-Su
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.40 no.5
    • /
    • pp.52-58
    • /
    • 1998
  • The objective of this study was to develop a polymer mortar protection block with high strength and durability using unsaturated polyester resin to complement defects of conventional cement mortar protection block. Physical and mechanical properties of the polymer mortar protection block were also investigated. Low absorptivity, high impact strength, and great bending strength of the polymer mortar protection block was compared with those of the conventional cement protection block. In conclusion, the polymer mortar protection block is excellent and useful as industrial products for erosion control works.

  • PDF

Mechanical Properties of Hybrid FRP Rebar (하이브리드 FRP 리바의 역학적 특성)

  • 박찬기;원종필
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.45 no.2
    • /
    • pp.58-67
    • /
    • 2003
  • Over the last decade fiber-reinforced polymer (FRP) reinforcement consisting of glass, carbon, or aramid fibers embedded in a resin such as vinyl ester, epoxy, or polyester has emerged as one of the most promising and affordable solutions to the corrosion problems of steel reinforcement in structural concrete. But reinforcing rebar for concrete made of FRP rebar has linear elastic behavior up to tensile failure. For safety a certain plastic strain and an elongation greater than 3% at maximum load is usually required for steel reinforcement in concrete structures. The same should be required for FRP rebar. Thus, the main object of this study was to develop new type of hybrid FRP rebar Also, this study was evaluated to the mechanical properties of Hybrid FRP rebar. The Manufacture of the hybrid FRP rebar was achieved by pultrusion, and braiding and filament winding techniques. Tensile and interlaminar shear test results of Hybrid FRP rebar can provide its excellent tensile strength-strain behavior and interlaminar stress-strain behavior.

Influence of Mixed Proportion Factors on Strength of Polymer Mortar (배합요인이 경량 폴리머 모르터의 강도에 미치는 영향)

  • 이윤수
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.41 no.1
    • /
    • pp.97-105
    • /
    • 1999
  • Recently , polymer concrete has been widely used in the construction industry because of its quick setting, high strength, excellect adhesion, watertightness and chemical resistance compared to ordinary cement concrete. Its application is also increased. In this paper, lightweight polymer mortars using unsaturated polyester resin and lightweight aggregate are prepared with various mix proportations, and tested for slump working life, apparent specific gravity , flexural and compressive strengths. As a result, the slump and working life can be controlled and thier flexural and compressive strengths are 9.7 to 22.0 MPa , and 23.0 to 100.8 MPa respectively at apparent specific gravities of 0.86 to 1.73.

  • PDF

Properties and Repair-Reinforcement of Concrete Introduced Crack (균열이 발생된 콘크리트의 특성 및 보수.보강(구조 및 재료 \circled2))

  • 김영익;윤준노;민정기;김경태;박필우;성찬용
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2000.10a
    • /
    • pp.284-289
    • /
    • 2000
  • This study is performed to evaluate an the crack properties and repair-reinforcement of concrete introduced crack. Materials used are portland cement, coarse aggregate, fine aggregate, unsaturated polyester resin and fly ash. Specimen is used beam of 76${\times}$76${\times}$412mm for measurement of pulse velocity, dynamic modulus of elasticity and bending strength and is introduced crack artificially. The following conclusions are drawn; Pulse velocity, dynamic modulus of elasticity and bending strength of concrete introduced crack is shown the lower 1.24∼11.91%, 3.42∼17.21% and 38.17∼61.0% than that of the control concrete, respectively. Pulse velocity, dynamic modulus of elasticity and bending strength of concrete repaired and reinforced crack is shown the higher 0.5∼2.60%, 1.57∼3.07% and 28.17∼47.25% than that of the concrete introduced crack and the lower than that of the control concrete, respectively.

  • PDF

Fundamental Properties of Lightweight Polymer Concrete (경량 폴리머 콘크리트의 기초적 성질)

  • 채경희;연구석;이윤수;이기원
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10b
    • /
    • pp.1139-1144
    • /
    • 2000
  • Recent advance in material technology has accelerated the development of high strength concrete using lightweight artificial aggregates. The lightweight concrete has many advantages that the reduction of dead lads and the increase in load capacity can ofter. In this study, lightweight polymer concrete using unsaturated polyester resin and lightweight aggregate were prepared and tested for testing the physical and the mechanical properties. The compressive strengths of lightweight polymer concretes with specific gravities from 1.32 to 1.78 were compressive strength of 250 to 470 $kgf/cm^2$ and flexural strengths were measured to be in the range of a third to a quarter of compressive strength

FE Analyses of the Compressive Characteristics of Carbon Fabric/Polymeric Foam for Sandwich Structure (유한요소해석을 이용한 직조 탄소섬유 발포 고분자 샌드위치 구조의 압축특성)

  • Chang Seung Hwan;Cheon Seong Sik
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.04a
    • /
    • pp.194-197
    • /
    • 2004
  • In this paper, compressive characteristics of carbon fabric skin with polymeric foam core sandwich structure were investigated by FE analyses and compressive tests of polyurethane foam were also conducted with respect to temperature changes, which were determined by curing processes of epoxy or polyester resin to obtain mechanical behaviour of polyurethane foam. FE analyses indicated variation of parameters with respect to manufacturing pressure, which have comparatively massive effect upon mechanical properties of sandwich structures, i.e. wavelength as well as crimp angle of carbon fabric

  • PDF

Study on Fatigue Damage Model and Multi-Stress Level Fatigue Life Prediction of Composite Materials (II) -Fatigue Damage Model using Reference Modulus- (복합재료의 피로손상 모형 및 다응력 수위 피로수명 예측 연구 (II) - 참고계수를 이용한 피로 손상 모형 -)

  • 이창수;황운봉;한경섭
    • Composites Research
    • /
    • v.12 no.2
    • /
    • pp.62-69
    • /
    • 1999
  • During fatigue loading of composite materials, damage accumulation can be monitored by measuring their material properties. In this study, fatigue modulus is used as the damage index. Fatigue life of composite materials may be predicted analytically using damage models which are based on fatigue modulus and resultant strain. Damage models are propesed as funtions of applied stress level, number of fatigue cycle and fatigue life. The predicted life was comparable to the experimental result obtained using E-glass fiber reinforced epoxy resin materials and pultruded glass fiber reinforce polyester composites under two-stress level fatigue loading.

  • PDF

Characteristics of Sulfuric acid corrosion of Recycled PET Polymer Concrete with Different Filler (충전재 변화에 따른 PET 재활용 폴리머 콘크리트의 황산 부식에 관한 특성)

  • Jo Byung Wan;Gu Ja Kap;Park Jong Hwa;Park Seung Kook
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.719-722
    • /
    • 2004
  • Resins using recycled PET offer the possibility of a lower source cost of materials for making useful polymer concrete products. The purposed of this paper is to form a part of reducing the damage of sulfuric acid, through investigating recycled PET polymer concrete, . immersed at sulfuric acid solution for 84 days. Recycled PET PC is excellent chemical resistance, resulting in the role of unsaturated polyester resin which consists of polymer chain structure accomplishes bond of aggregates and filler strongly. Also, Recycled PET PC, used fly-ash as filler, is stronger resistance of sulfuric acid corrosion than $CaCO_3$, because it is composed of $SiO_2$ and very strong glassy crystal structure. Therefore, Recycled PET PC, used fly-ash as filler, is available under corrosion circumstances like sewer pipe or waste disposal plant.

  • PDF