• Title/Summary/Keyword: polyelectrolyte

Search Result 198, Processing Time 0.023 seconds

Effects of Poly(Styrene-Co-Maleic acid) as Adhesion Promoter on Rheology of Aqueous Cu Nanoparticle Ink and Adhesion of Printed Cu Pattern on Polyimid Film (수계 Cu 나노입자 잉크에서 Poly(styrene-co-maleic acid) 접착 증진제가 잉크 레올로지와 인쇄패턴의 접착력에 미치는 영향)

  • Jo, Yejin;Seo, Yeong-Hui;Jeong, Sunho;Choi, Youngmin;Kim, Eui Duk;Oh, Seok Heon;Ryu, Beyong-Hwan
    • Korean Journal of Materials Research
    • /
    • v.25 no.12
    • /
    • pp.719-726
    • /
    • 2015
  • For a decade, solution-processed functional materials and various printing technologies have attracted increasingly the significant interest in realizing low-cost flexible electronics. In this study, Cu nanoparticles are synthesized via the chemical reduction of Cu ions under inert atmosphere. To prevent interparticle agglomeration and surface oxidation, oleic acid is incorporated as a surface capping molecule and hydrazine is used as a reducing agent. To endow water-compatibility, the surface of synthesized Cu nanoparticles is modified by a mixture of carboxyl-terminated anionic polyelectrolyte and polyoxylethylene oleylamine ether. For reducing the surface tension and the evaporation rate of aqueous Cu nanoparticle inks, the solvent composition of Cu nanoparticle ink is designed as DI water:2-methoxy ethanol:glycerol:ethylene glycol = 50:20:5:25 wt%. The effects of poly(styrene-co-maleic acid) as an adhesion promoter(AP) on rheology of aqueous Cu nanoparticle inks and adhesion of Cu pattern printed on polyimid films are investigated. The 40 wt% aqueous Cu nanoparticle inks with 0.5 wt% of Poly(styrene-co-maleic acid) show the "Newtonian flow" and has a low viscosity under $10mPa{\cdots}S$, which is applicable to inkjet printing. The Cu patterns with a linewidth of $50{\sim}60{\mu}m$ are successfully fabricated. With the addition of Poly(styrene-co-maleic acid), the adhesion of printed Cu patterns on polyimid films is superior to those of patterns prepared from Poly(styrene-co-maleic acid)-free inks. The resistivities of Cu films are measured to be $10{\sim}15{\mu}{\Omega}{\cdot}cm$ at annealing temperature of $300^{\circ}C$.

Synthesis of Almost Fully Quavternized Poly(4-vinylpyridine)s by Polymer Reaction and Aggregation Property with Sodium Dodecyl Sulfate (고분자 반응에 의한 거의 완전 4차화된 폴리(4-비닐피리딘)의 합성 및 도데실 황산 소듐과의 응집 특성)

  • Sim, Hoo-Sik;Choi, E-Joon;Kim, Young-Chul;Park, Il-Hyun
    • Polymer(Korea)
    • /
    • v.30 no.6
    • /
    • pp.556-562
    • /
    • 2006
  • Quarternized poly(4-vinyl pyridine)s have been prepared by the reaction of poly (4-vinyl pyridine)s (Mw=50 kg/mol and 200 kg/mol) and alkylating agents varying the carbon numbers of the alkyl groups (m):dimethyl sulfate (m=1) as well as bromoalkane (m= 5, 8, 12, 16, and 22) was used as an alkylating agent. The degree of alkylation was determined by using an elemental analysis and NMR spectroscopy. As a result, polyelectrolytes were obtained by the almost full alkylation of poly (4-vinyl pyridine)s. The critical aggregation concentration (CAC) was determined by measuring the change of turbidity occurred by addition of sodium dodecyl sulfate (SDS) into aqueous solution of quarternized poly-(4-vinyl pyridine)s, and the dependence of molecular weight of polymer, the length of N-alkyl group and concentration of NaCl upon CAC was investigated. As a result, as the molecular weight or the length of alkyl group was increased, less amount of SDS Gould induce the aggregation.

A Study of Drag Reduction by Polymer-Surfactant Mixture System (고분자-계면활성제 혼합물에 의한 마찰저항 감소연구)

  • Kim, Jeong-Tae;Kim, Cheol-Am;Choe, Hyeong-Jin;Kim, Jong-Bo;Yun, Hyeong-Gi;Park, Seong-Ryong
    • Korean Journal of Materials Research
    • /
    • v.8 no.2
    • /
    • pp.135-140
    • /
    • 1998
  • Drag reduction produced by dilute solution of water soluble ionic polymer-surfactant complex under turbulent flow in a rotating disk apparatus(RDA) was investigated in this study. Three different molecular weights of polyacrylic acid(PAA) were adopted as drag reducing additives, and distilled water was used as a solvent. Experiments were undertaken to observe the dependence of drag reduction on various factors such as polymer molecular weight, molecular expansions and flexibility, rotating speed of the disk and polymer concentration. Specific considerations were put on conformational difference between surfactant and polymer, and effect of pH on ionic polymer possessing various molecular conformation through pH. The complex of ionic polymer and surfactant(Sodium Dodecyl Sulfate) behaves like a large polyelectrolyte. Surfactant changes the polymer conformation and then increases the dimension of the polymer. The radius of gyration, hydrodynamic volume and relative viscosity of the polymer-surfactant system are observed to be greater than those of polymer itself. Such surfactant-polymer complex has enhanced drag reduction properties.

  • PDF

Effect of Green Microstructure on Sintered Microstructure and Mechanical Properties of Reaction-Bonded Silicon Carbide (성형미세구조가 반응소결 탄화규소체의 소결미세구조 및 기계적 특성에 미치는 영향)

  • 박현철;김재원;백운규;최성철
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.1
    • /
    • pp.97-105
    • /
    • 1999
  • In the binary system of SiC and carbon, porosity and pore size distribution of green body was controlled by varying pH, by the addition of polyelectrolyte dispersants, and by using different particle size of starting powders. The preforms having different green microstructure were fabricated by slip casting from suspensions having different dispersion condition. The reaction bonding process was carried out for these preforms. The condition of reaction bonding was 1600$^{\circ}C$ and 20 min. under vacuum atmosphere. The analyses of optical and SEM were studied to investigate the effect of green microstructure on that of reaction bonded silicon carbide and subsequently the mechanical properties of sintered body was investigated. Different green microstructures were obtained from suspensions having different dispersion condition. It was found that the pore size could be remarkably reduced for a fine SiC(0.5$\mu\textrm{m}$). The bimodal microstructure was not found in the present study, which is frequently observed in the typical reaction bonded silicon carbide. It is considered that the ratio between SiC and C was responsible for the formation of bimodal microstructure. For the preform fabricated from the well dispersed suspension, the 3-point bending strength of reaction-bonded silicon carbide was 310${\pm}$40 MPa compared to the specimen fabricated from relatively agglomerated particles having lower value 260${\pm}$MPa.

  • PDF

Fabrication of Chemical Sensors for the Detection of Acidic Gas using 1,3-bisdicyanovinylindane (1,3-bisdicyanovinylindane을 이용한 산성가스 감지용 화학 센서 제작)

  • Song, Hwan-Moon;Park, Young-Min;Son, Young-A;Lee, Chang-Soo
    • Korean Chemical Engineering Research
    • /
    • v.46 no.1
    • /
    • pp.184-188
    • /
    • 2008
  • This study presented simple and efficient fabrication of chemical sensors for the detection of acidic gas using 1,3-bisdicyanovinylindane as an indicator because it can be promising materials having property of the rapid color change according to the variation of pH. The dissociation of proton and dye in acidic condition as changing of ion pairs give rise to dramatically change the absorbance intensity of 1,3-bisdicyanovinylindane, which can be easily applied to the development of chemical sensors. In addition, indicator dyes having negatively charge in aqueous phase can be easily fabricated using layer-by-layer (LBL) methods by way of electrostatic interaction. For the proof of concept, we demonstrated the abrupt presentation of skeleton symbol on the chemical sensor, which could be resulted from the reaction of 1,3-bisdicyanovinylindane as background color with acidic gas. Thus, the rapid appearance of symbol will induce user's caution under the emergency condition. The presented chemical gas sensor using 1,3-bisdicyanovinylindane have strong advantages. First, the fabrication process of gas sensor was very simple and low-cost. Secondly, sensors reacted by acidic gas could be reused for several times. Finally, the chemical gas sensor would be environmentally friend, which can be a basic tool for the realization of eco-organic sensor device.

Preparation of Heterogeneous Bipolar Membranes Using Poly (phenylene oxide, PPO) Polyelectrolyte and Their Water Splitting Properties (Poly (phenylene oxide, PPO) 고분자 전해질을 이용한 불균질 바이폴라막 제조 및 물분해 특성)

  • Kim, In Sik;Hwang, Seong Yeon;Kang, Byung Gwan;Hwang, Taek Sung
    • Korean Chemical Engineering Research
    • /
    • v.57 no.1
    • /
    • pp.65-72
    • /
    • 2019
  • In this study, heterogeneous ion exchange membranes were prepared by casting method with various mixing ratios of PPO ion-selective solution and ion exchange resin. Then heterogeneous bipolar membranes were prepared by using this. The water content of heterogeneous cation and anion exchange membranes were 60~80% respectively, the ion exchange capacity was 2.81~3.26 meq/g, 2.31~2.74 meq/g and electrical resistances were $1.65{\sim}1.45{\Omega}{\cdot}cm^2$ and $1.55{\sim}1.05{\Omega}{\cdot}cm^2$. The tensile strength of heterogeneous bipolar membrane was lower than that of PPO resin before functionalization ($700Kg_f/cm^2$). The tensile strength of heterogeneous bipolar membrane with catalyst layer was lower than that of non-catalytic heterogeneous bipolar membrane. The water splitting voltage of the heterogeneous bipolar membrane with catalyst layer was low and stable at a minimum of 1.7~1.8 V, maximum 3.9~4.0 V, and the water splitting voltage of the non-catalytic heterogeneous bipolar membrane was constant at 3.8~4.0 V.

Sensitive and Selective Electrochemical Glucose Biosensor Based on a Carbon Nanotube Electronic Film (탄소나노튜브 전자 필름을 이용한 고감도-고선택성 전기화학 글루코스 센서)

  • Lee, Seung-Woo;Lee, Dongwook;Seo, Byeong-Gwuan
    • Applied Chemistry for Engineering
    • /
    • v.33 no.2
    • /
    • pp.188-194
    • /
    • 2022
  • This work presents a non-destructive and straightforward approach to assemble a large-scale conductive electronic film made of a pre-treated single-walled carbon nanotube (SWCNT) solution. For effective electron transfer between the immobilized enzyme and SWCNT electronic film, we optimized the pre-treatment step of SWCNT with p-terphenyl-4,4"-dithiol and dithiothreitol. Glucose oxidase (GOx, a model enzyme in this study) was immobilized on the SWCNT electronic film following the positively charged polyelectrolyte layer deposition. The glucose detection was realized through effective electron transfer between the immobilized GOx and SWCNT electronic film at the negative potential value (-0.45 V vs. Ag/AgCl). The SWCNT electronic film-based glucose biosensor exhibited a sensitivity of 98 ㎂/mM·cm2. In addition, the SWCNT electronic film biosensor showed the excellent selectivity (less than 4 % change) against a variety of redox-active interfering substances, such as ascorbic acid, uric acid, dopamine, and acetaminophen, by avoiding co-oxidation of the interfering substances at the negative potential value.

Rheological Properties of Chitosan Manufactured from the Pens of Domestic (Todarodes pacificus) and Foreign (Ommastrephes bartrami) Squid (연안산 및 남미산 오징어 연골로부터 제조한 Chitosan의 레올로지 특성)

  • KIM Sang-Moo;PARK Seong-Min;CHOI Hyeon-Mee;LEE Keun-Tai
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.30 no.5
    • /
    • pp.859-867
    • /
    • 1997
  • In order to utilize the processing wastes of squid, chitosans were manufactured from the pens of domestic squid, Todarbdes pacificus and foreign squid, Ommastrephes bartrami and then, its rheological properties were studied. The amounts of nitrogen and minerals of the domestic squid pens were $11.4\%\;and\;0.1\%$ respectively, whereas those of its chitosan were $7.5\%\;and\;0.2\%$. In case of foreign squid pen and chitosan, the amounts of nitrogen and minerals were $12.1\%,\;0.8\%\;and\;7.8\%,\;0.2\%$ respectively. Intrinsic viscosity $([\eta]) $ of domestic and foreign squid pen chitosans were decreased with increasing pH from 3.4 to 5.4 which might be due to the reduced repulsion in inter- of intra- chitosan molecules. Intrinsic viscosity of the domestic and foreign squid pen chitosans were decreased with increasing NaCl concentration thus indicated that the domestic and foreign squid pen chitosans were polyelectrolyte molecules and stiffness of squid pen thitosans were 0.11 similar to that of k-carrageenan. Flow type of squid pen chitosan solutions were pseudoplastic fluids without yield stress by the viscosity measurement. But the squid pen chitosan solutions showed newtonian fluid up to $0.15\~0.24\%$ concentration for domestic and $0.21\~0.24\%$ concentration for foreign at $10\~50\%$. Concentration dependence of consistency index in infinitive dilute domain (Kc) were higher in the dilute domain than entangled domain. Activation energies (Ea) of the squid pen chitosans were 3.7, 6.3, 3.6, 4.0 and 4.1 Kcal/g moi for domestic and 3.2, 3.1, 3.4, 3.8 and 3.6 Kcal/g mol for foreign at 0.1, 0.15, 0.25, 0.35 and $0.5\%$, respectively.

  • PDF