Browse > Article
http://dx.doi.org/10.3740/MRSK.2015.25.12.719

Effects of Poly(Styrene-Co-Maleic acid) as Adhesion Promoter on Rheology of Aqueous Cu Nanoparticle Ink and Adhesion of Printed Cu Pattern on Polyimid Film  

Jo, Yejin (Advanced Materials Division, Korea Research Institute of Chemical Technology)
Seo, Yeong-Hui (Advanced Materials Division, Korea Research Institute of Chemical Technology)
Jeong, Sunho (Advanced Materials Division, Korea Research Institute of Chemical Technology)
Choi, Youngmin (Advanced Materials Division, Korea Research Institute of Chemical Technology)
Kim, Eui Duk (Nano R&D Center, Hanwha Chemical Research & Development Center)
Oh, Seok Heon (Nano R&D Center, Hanwha Chemical Research & Development Center)
Ryu, Beyong-Hwan (Advanced Materials Division, Korea Research Institute of Chemical Technology)
Publication Information
Korean Journal of Materials Research / v.25, no.12, 2015 , pp. 719-726 More about this Journal
Abstract
For a decade, solution-processed functional materials and various printing technologies have attracted increasingly the significant interest in realizing low-cost flexible electronics. In this study, Cu nanoparticles are synthesized via the chemical reduction of Cu ions under inert atmosphere. To prevent interparticle agglomeration and surface oxidation, oleic acid is incorporated as a surface capping molecule and hydrazine is used as a reducing agent. To endow water-compatibility, the surface of synthesized Cu nanoparticles is modified by a mixture of carboxyl-terminated anionic polyelectrolyte and polyoxylethylene oleylamine ether. For reducing the surface tension and the evaporation rate of aqueous Cu nanoparticle inks, the solvent composition of Cu nanoparticle ink is designed as DI water:2-methoxy ethanol:glycerol:ethylene glycol = 50:20:5:25 wt%. The effects of poly(styrene-co-maleic acid) as an adhesion promoter(AP) on rheology of aqueous Cu nanoparticle inks and adhesion of Cu pattern printed on polyimid films are investigated. The 40 wt% aqueous Cu nanoparticle inks with 0.5 wt% of Poly(styrene-co-maleic acid) show the "Newtonian flow" and has a low viscosity under $10mPa{\cdots}S$, which is applicable to inkjet printing. The Cu patterns with a linewidth of $50{\sim}60{\mu}m$ are successfully fabricated. With the addition of Poly(styrene-co-maleic acid), the adhesion of printed Cu patterns on polyimid films is superior to those of patterns prepared from Poly(styrene-co-maleic acid)-free inks. The resistivities of Cu films are measured to be $10{\sim}15{\mu}{\Omega}{\cdot}cm$ at annealing temperature of $300^{\circ}C$.
Keywords
aqueous Cu nanoparticle ink; inkjet printing; poly(styrene-co-maleic acid); rheology; adhesion of printed Cu pattern;
Citations & Related Records
연도 인용수 순위
  • Reference
1 S. Jeong, H. Song, W. Lee, S. Lee, Y. Choi, W. Son, E. Kim, C. Paik, S. Oh, and B. Ryu, Langmuir, 27, 3144 (2011).   DOI
2 Y. Choi and S. Hong, Langmuir, 31, 8101 (2015).   DOI
3 G. L. Draper, R. Dharmadasa, M. E. Staats, B. W. Lavery and T. Druffel, ACS Appl. Mater. Interfaces, 7, 16478 (2015).   DOI
4 J. Park, G. Kang, H. Ahn and L. Guo, J. Adv. Mater., 22, E247 (2010).   DOI
5 Y. Li, Y. Wu and B. Ong, J. Am. Chem. Soc., 127, 3266 (2005).   DOI
6 H. Sirringhaus, T. Kawase, R. H. Friend, T. Shimoda, M. Inbasekaran, W. Wu and P. Woo, Science, 290, 2123 (2000).   DOI
7 R. K. Holman, S. A. Uhland, M. Cima and J. E. Sachs, J. Colloid Interface Sci., 247, 266 (2002).   DOI
8 P. Chantal, J. Robert, K. Arnold, M. Olga, F. Julie, L. Sylvie and M. Patrick. Org. Electron., 15, 1836 (2014).   DOI
9 P. Buffat and J. P. Borel, Phys. Rev. A: At. Mol. Opt. Phys., 13, 2287 (1976).   DOI
10 S. Jeong, K. Woo, D. Kim, S. Lim, J. S. Kim, H. Shin, Y. Xia and J. Moon, Adv. Funct. Mater., 18, 679 (2008).   DOI
11 S. Gamerith, A. Klug, H. Scheiber, U. Scherf, E. Moderegger and E. J. List, Adv. Funct. Mater., 17, 3111 (2007).   DOI
12 K. Woo, D. Kim, J. S. Kim, S. Lim and J. Moon, Langmuir, 25, 429 (2009).   DOI
13 B. J. Gans, ; U. S. Schubert, Langmuir, 20, 7789 (2004).   DOI
14 D. Soltman and V. Subramanian, Langmuir, 24, 2224 (2008).   DOI
15 R. Prucek, L. Kvitek, A. Panacek, L. Vancurova, J. Soukupova, D. Jancik and R. J. Zboril, Mater. Chem., 19, 8463 (2009).   DOI
16 B. Escaig, J. de Physique IV, 03(C7), C7-753 (1993).
17 J. D. Venables, J. Mater. Sci., 19, 2431 (1984).   DOI
18 G. Ramarathnam, M. Libertucci, M. M. Sadowski and T. H. North, Weld. Res. Suppl., 12, 483S (1992).