• Title/Summary/Keyword: polydyne cam

Search Result 3, Processing Time 0.022 seconds

A Multi-Polynomial Synthesis Method for DRRD Cam Profile Optimizations and Effects of Shape Factors on the Cam Lobe Area (DRRD 캠 형상 최적 설계를 위한 다항식 합성법과 캠 로우브 면적에 미치는 형상 계수들의 영향)

  • 김도중;박성태
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.2 no.4
    • /
    • pp.59-71
    • /
    • 1994
  • A multi-polynomial method is proposed to synthesize DRRD cam profiles. A cam lift duration s divided into 10 sections, each of them is expressed by a polynomial equation. 12 design variables are extracted from the cam profile displacement, velocity, and acceleration curves. Because all the design variables have physical meanings which are familiar to most cam designers, it is easy to imagine a profile shape from the design variables. The design envelope of the method is wide enough to be used in DRRD automotive cam designs. Polydyne cams, widely used in automotive engines, are included into the envelope. Unlike Polydyne cams, the method provides capability of wide velocity factor variations, which gives much flexibility in flat-faced tappet design. Area factor of profiles designed by the method can be increased 5-10% compared to those of Polydyne cams without increasing acceleration factor. The method is especially useful for cam profile optimizations.

  • PDF

A Study on the Dynamic Characteristics of Polydyne cam Valve Train (폴리다인 캠 밸브 트레인의 동적 특성에 관한 연구)

  • You, Hwan-Shin;Chun, Dong-Joon
    • Journal of Advanced Navigation Technology
    • /
    • v.15 no.3
    • /
    • pp.441-448
    • /
    • 2011
  • It is very important that establishing the valve train equations and representing the behavior of the valve train parts. To maintain the specific efficiency of running engine, the cam profile of valve train has more specific influence on the adequate behavior of the valve train than a valve clearance, heat-resistance and durability of parts. The polynomial cam, the multipol cam and polydyne cam profie are widely used to represent cam behaviour. In this study, using polydyne cam design profile equations which is more adequate for representing high speed engine, the geometrical modeling and mathmatical variable analysis are established to analysis the valve behaviour.

A Study on the Optimal Design of Automotive Cam Profiles using Hermite Curve (Hermite 곡선을 이용한 자동차 엔진 캠 형상의 최적 설계에 관한 연구)

  • 김도중;김원현
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.4
    • /
    • pp.129-140
    • /
    • 1998
  • A numerical method is proposed to optimize automotive cam profiles. An acceleration curve of a cam follower motion is described by Hermite spline curves. Because of the intrinsic characteristics of the Hermite curve, it is possible to design an acceleration curve with arbitrary shape. Design variables in the optimization problem are location of control points which define the acceleration curve. Objective function includes dynamic performances as well as kinematic properties of a valve train. Similar optimization procedure was also performed using Polydyne cam profile synthesis method. Optimized profiles using the Hermite curve are proved to be superior to those using the Polydyne method.

  • PDF