• Title/Summary/Keyword: polycrystalline

Search Result 1,290, Processing Time 0.032 seconds

Growth and Properties of CdS Thin films(A Study on the adhesion of II-VI compound semiconductor for applications in light emitting and absorbing devices) (CdS 박막제작 및 그 특성(발광 및 수광 소자 응용을 위한에 II-VI족 화합물 반도체들의 접착에 관한 기초연구))

  • Kang, Hyun-Shik;Cho, Ji-Eun;Kim, Kyung-Wha
    • Solar Energy
    • /
    • v.17 no.2
    • /
    • pp.55-66
    • /
    • 1997
  • The structural and optoelectronic properties of polycrystalline CdS films up to several microns in thickness, fabricated by three different methods, are compared to one another for the purpose of preparing CdTe/CdS solar cells. All films were deposited on an indium tin oxide on glass substrate. The three methods are: 1) alternated spraying of cation and anion solution at room temperature; 2) spray pyrolysis with substrate temperature up to $500^{\circ}C$; 3) chemical bath deposition (CBD). Deposited films were thermally treated in various ways. All films showed a well-developed wurtzite structure. Films grown by the alternated-spray method and the chemical bath method consist of randomly-oriented crystallites with dimensions <0.5 microns. Annealing at $400^{\circ}C$ increases the crystallite size slightly. Films which were grown by pyrolysis at substrate temperatures from $400^{\circ}C\;to\;500^{\cir\c}C$ were oriented in the <002> direction. For growth by pyrolysis at $500^{\circ}C$, the surface is rough on a lateral scale of 0.1 to 0.3 microns. The optical band gap and defect states are investigated by optical absorption, photoluminescene, Raman, and photothermal deflection spectroscopies.

  • PDF

Growth and Characterization of LaAlO$_3$ Single Crystals by the Traveling Solvent Floating Zone Method (Travelin Solvent Floating Zone법에 의한 LaAlO$_3$ 단결정의 성장 및 특성)

  • 정일형;임창성;오근호
    • Journal of the Korean Ceramic Society
    • /
    • v.35 no.3
    • /
    • pp.280-286
    • /
    • 1998
  • LaAlO3 Single crystals used as a substrate for thin film depositions of a high temperature oxide su-perconductor YB2Cu3O7 and applied to microwave frequencies were grown by the Traveling Solvent Flati-ing Zone (TSFZ) method and characterized. For the growth of LaAlO3 single crystals polycrystalline fe-edrods were prepared from powder mixture of La2O3 and Al2O3 with a mole ratio of 1:1 calcined at 110$0^{\circ}C$ for 3h and sintered at 140$0^{\circ}C$ for 4h The growth LaAlO3 crystals was 4-5mm in diameter 30mm in length and dark brown. The growth rate was 2-3mm/h and the rotation speeds were 10rpm for an upper ro-tation and 40 rpm for a lower rotation The growing crystals and the feedrods were counter-rotated. The orientation of the grown single crystals of LaAlO3 was identified to be [111] direction. Dielectric constants were measured to be 30-33 between 100 kHz and 1 MHz in the 30$0^{\circ}C$ to 45$0^{\circ}C$ temperature range and 102 in a range of 100 kHz at the phase transformation temperature of 522$^{\circ}C$ Dielectric losses were calculated to be 1.8$\times$10-4 at the room temperature and 5.7$\times$10-3 at the phase transformation temperature. Lattice con-stants of the grown crystlals were determined to be aR=5.3806 $\AA$ and $\alpha$=60.043$^{\circ}$ by the least square method.

  • PDF

Properties of Indium Zinc Oxide Thin Films Prepared by Pulsed Laser Deposition (펄스레이저증착법으로 증착한 Indium Zinc Oxide 박막의 물성)

  • Choi, Hak-Soon;Jeong, Il-Kyo;Shin, Mun-Soo;Kim, Heon-Oh;Kim, Yong-Soo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.7
    • /
    • pp.537-542
    • /
    • 2011
  • Recently, n-InZnO/p-CuO oxide diode has attracted great attention due to possible application for selector device of 3-dimensional cross-point resistive memory structures. To investigate the detailed properties of InZnO (IZO), we have deposited IZO films on the fused quartz substrate using PLD (pulsed laser deposition) method at oxygen pressure of 1~100 mTorr and substrate temperature of RT$\sim600^{\circ}C$. The influence of oxygen pressure and substrate temperature on structural, optical and electrical of IZO films is analyzed using XRD (x-ray diffraction), SEM (scanning electron microscopy), UV-Vis spectrophotometry, spectroscopic ellipsometry (SE) and hall measurements. The XRD results shows that the deposited thin films are polycrystalline over $300^{\circ}C$ of substrate temperature independent of oxygen pressure. The resistivity of films was increased as oxygen pressure and substrate temperature decrease. The thickness and optical constants of the deposited films measured with UV-Vis spectrophotometer were also compared with those of broken SEM and SE results.

A Study on Micro Gas Sensor Utilizing WO$_3$ Thin Films Fabricated by Sputtering Method (스퍼터링법으로 제작한 WO$_3$ 박막을 이용한 NO$_2$ 마이크로 가스센서에 관한 연구)

  • 김창교;이영환;노일호;유홍진;유광수;기창진
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.4 no.3
    • /
    • pp.139-144
    • /
    • 2003
  • A flat type micro gas sensor was fabricated on the p-type silicon wafer with low stress Si$_3$N$_4$, whose thickness is 2 ${\mu}{\textrm}{m}$, using MEMS technology. WO$_3$ thin film as a sensing material for detection of NO$_2$ gas was deposited using a tungsten target by sputtering method, followed by thermal oxidation at several temperatures (40$0^{\circ}C$-$600^{\circ}C$) for one hour. NO$_2$ sensitivities were investigated for the WO$_3$ thin films with different annealing temperatures. The highest sensitivity was obtained for the samples annealed at $600^{\circ}C$ when it was operated at 20$0^{\circ}C$. The results of XRD analysis showed the annealed samples had polycrystalline phase mixed with triclinic and orthorhombic structures. The sample exhibits higher sensitivity when the system has less triclinic structure. The sensitivities, $R_{gas}/R_{air},$ operating at 20$0^{\circ}C$ to 5 ppm NO$_2$ of the sample annealed at $600^{\circ}C$ were approximately 90.

  • PDF

Development of constant current device for using in the water treatment controller with Ni-Tl-P alloy deposits (Ni-Tl-P합금피막을 이용한 수처리장치용 정전류소자의 개발)

  • Ryu, Il-Kwang
    • Journal of environmental and Sanitary engineering
    • /
    • v.18 no.3 s.49
    • /
    • pp.35-42
    • /
    • 2003
  • The electric resistance and constant current were investigated on the nickel-thallium-phosphorus alloy deposits by electroless-plating. The Ni-Tl-P alloy deposits were achieved with a bath using sodium hypophosphit as the reducing agent and sodium citrate as the comlexing agent. The basic plating solution is composed of 0.1M NiSO$_4$, 0.005${\sim}$0.0IM Tl$_2$S0$_4$, 0.1${\sim}$O.2M sodium hypophosphite and 0.02${\sim}$O.IM sodium citrate and the plating condition were pH 5${\sim}$6, temperrature 80$_4$90${\circ}$C. The results obtained are summarized as follows: 1) The crystal structure of deposit was amorphous structure as deposited state, became microcrystallized centering on Ni(111) plane by heat treatment at 200${\circ}$C, and grew as polycrystalline Ni, Ni$_3$P, Ni$_5$p$_2$,Tl, etc. by heat treatment higher than 350${\circ}$C. The grain size of plated deposits was grown up to 28.3~42.0nm by heat treatment for 1hour at 500${\circ}$C. 2) The electrical resistivity showed a comparatively high value of 192.5$_4$208.3 ${\mu}$${\Omega}$Cm and its thermal stability was great with resistivity value less than 0.22% in the thermal surroundings of 200${\circ}$C. 3) Ni-Tl-P alloy deposit showed such good constant current-making-effect in the variation of electric voltage, heat treatment temperature, and the composition of the deposit that it can be put to practical use as the matter of constant current device.

Parametric Characterization of Zinc Oxide Nanostructures Forming Three-Dimensional Hybrid Nanoarchitectures on Carbon Nanotube Constructs (산화아연 나노구조의 탄소나노튜브와의 혼성구조 형성 특성 연구)

  • Ok, Jong G.
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.6
    • /
    • pp.541-548
    • /
    • 2015
  • We study the structural and functional characteristics of zinc oxide (ZnO) nanostructures that are grown on carbon nanotube (CNT) constructs via step-wise chemical vapor deposition (CVD). First, we optimize the CVD process to directly grow ZnO nanostructures on CNTs by controlling the growth temperature below $600^{\circ}C$, where CNTs can be sustained in a ZnO-growing oxidative atmosphere. We then investigate how the morphology and areal density of ZnO nanostructures evolve depending on process parameters, such as pressure, temperature, and gas feeding composition, while focusing on the effect of underlying CNT topology on ZnO nucleation and growth. Because various types of ZnO nanostructures, including nanowires, nanorods, nanoplates, and polycrystalline nanocrystals, can be conformally formed on highly conductive CNT platforms, this electrically addressable three-dimensional hybrid nanoarchitecture may better meet a wide range of nanoelectronic application-specific needs.

Investigation of Effective Contact Resistance of ZTO-Based Thin Film Transistors

  • Gang, Yu-Jin;Han, Dong-Seok;Park, Jae-Hyeong;Mun, Dae-Yong;Sin, So-Ra;Park, Jong-Wan
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.543-543
    • /
    • 2013
  • Thin-film transistors (TFTs) based on oxide semiconductors have been regarded as promising alternatives for conventional amorphous and polycrystalline silicon TFTs. Oxide TFTs have several advantages, such as low temperature processing, transparency and high field-effect mobility. Lots of oxide semiconductors for example ZnO, SnO2, In2O3, InZnO, ZnSnO, and InGaZnO etc. have been researched. Particularly, zinc-tin oxide (ZTO) is suitable for channel layer of oxide TFTs having a high mobility that Sn in ZTO can improve the carrier transport by overlapping orbital. However, some issues related to the ZTO TFT electrical performance still remain to be resolved, such as obtaining good electrical contact between source/drain (S/D) electrodes and active channel layer. In this study, the bottom-gate type ZTO TFTs with staggered structure were prepared. Thin films of ZTO (40 nm thick) were deposited by DC magnetron sputtering and performed at room temperature in an Ar atmosphere with an oxygen partial pressure of 10%. After annealing the thin films of ZTO at $400^{\circ}C$ or an hour, Cu, Mo, ITO and Ti electrodes were used for the S/D electrodes. Cu, Mo, ITO and Ti (200 nm thick) were also deposited by DC magnetron sputtering at room temperature. The channel layer and S/D electrodes were defined using a lift-off process which resulted in a fixed width W of 100 ${\mu}m$ and channel length L varied from 10 to 50 ${\mu}m$. The TFT source/drain series resistance, the intrinsic mobility (${\mu}i$), and intrinsic threshold voltage (Vi) were extracted by transmission line method (TLM) using a series of TFTs with different channel lengths. And the performances of ZTO TFTs were measured by using HP 4145B semiconductor analyzer. The results showed that the Cu S/D electrodes had a high intrinsic field effect mobility and a low effective contact resistance compared to other electrodes such as Mo, ITO and Ti.

  • PDF

Magnetic Field-Assisted, Nickel-Induced Crystallization of Amorphous Silicon Thin Film

  • Moon, Sunwoo;Kim, Kyeonghun;Kim, Sungmin;Jang, Jinhyeok;Lee, Seungmin;Kim, Jung-Su;Kim, Donghwan;Han, Seung-Hee
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.313-313
    • /
    • 2013
  • For high-performance TFT (Thin film transistor), poly-crystalline semiconductor thin film with low resistivity and high hall carrier mobility is necessary. But, conventional SPC (Solid phase crystallization) process has disadvantages in fabrication such as long annealing time in high temperature or using very expensive Excimer laser. On the contrary, MIC (Metal-induced crystallization) process enables semiconductor thin film crystallization at lower temperature in short annealing time. But, it has been known that the poly-crystalline semiconductor thin film fabricated by MIC methods, has low hall mobility due to the residual metals after crystallization process. In this study, Ni metal was shallow implanted using PIII&D (Plasma Immersion Ion Implantation & Deposition) technique instead of depositing Ni layer to reduce the Ni contamination after annealing. In addition, the effect of external magnetic field during annealing was studied to enhance the amorphous silicon thin film crystallization process. Various thin film analytical techniques such as XRD (X-Ray Diffraction), Raman spectroscopy, and XPS (X-ray Photoelectron Spectroscopy), Hall mobility measurement system were used to investigate the structure and composition of silicon thin film samples.

  • PDF

Fabrication and characterization of CdS photoconductive cell by the print/sintering method (인쇄/소결 방법에 의한 CdS 광전도 셀 제작과 특성)

  • Jeong, Tae-Soo;Kim, Taek-Sung;Jeong, Cheol-Hoon;Lee, Hoon;Shin, Yeong-Jin;Hong, Kwang-Joon;Yu, Pyeong-Yeol
    • Journal of Sensor Science and Technology
    • /
    • v.7 no.5
    • /
    • pp.350-355
    • /
    • 1998
  • We fabricated a photoconductive cell made of polycrystalline CdS thick film which has high photo-sensitivity using a print/sintering method. The resultant grain size is about $4\;{\mu}m$. When $CuCl_2$ of 0.06 to 0.12 mg is added, the sensitivity and the ratio of photocurrent to dark current are 0.8 and $10^5$, respectively. The response wavelength is 511 nm. The rise and decay response times are 50 and 20 ms, respectively. In addition, the maximum power dissipation is beyond 80mW. We noticed that the addition of $CuCl_2$ between 0.06 and 0.12 mg to 1g of CdS results in a reliable formation of photoconductive sensor.

  • PDF

A Study of cut off effect of ultraviolet in sunglasses lens coated with nickel-ferrite thin film NxFe3-xO4 (니켈페라이트 박막 NxFe3-xO4를 이용한 선글라스 렌즈의 자외선 차단효과에 대한 연구)

  • Ha, T.W.;Lee, Y.H.;Choi, K.S.;Cha, J.W.
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.8 no.2
    • /
    • pp.25-29
    • /
    • 2003
  • Nickel-ferrite $Ni_xFe_{3-x}O_4$ thin films with several composition for Ni on glass substrate was prepared by ferrite plating method in order to make sunglass which cut off ultraviolet and shield electromagnetic field. It has single phase of polycrystalline spinel structure and has gloss as mirror and has high hardness which is no scratch while scraping by using nail. The transmittance of nickel-ferrite thin film is lowered to zero below 400 nm manifestly. And it shows that the nickel-ferrite thin film in nickel composition rate x = 0.09 was most cut oil ultraviolet when compared with goods of other company in the cut off effect of ultraviolet. Therefore, sunglasses coated with $Ni_xFe_{3-x}O_4$ thin film can be used in removing ultraviolet and electromagnetic field.

  • PDF