• Title/Summary/Keyword: polybenzoxazine

Search Result 3, Processing Time 0.017 seconds

Sawdust reinforced polybenzoxazine composites: Thermal and structural properties

  • Garigipati, Ravi Krishna Swami;Malkapuram, Ramakrishna
    • Advances in materials Research
    • /
    • v.9 no.4
    • /
    • pp.311-321
    • /
    • 2020
  • In this study, Mangifera Indica tree sawdust reinforced bisphenol-A aniline based benzoxazine composites were prepared by varying the sawdust from 20 wt% to 45 wt%. Thermogravimetric analysis of composites revealed excellent compatibility between polybenzoxazine and sawdust from the remarkable growth in char yield from 22% (neat resin) to 36% (for highly filled) and glass transition temperature from 151 to 165℃. Ultimate weight loss of the composites evaluated from the Derivatives of TG plots. Limiting oxygen index values of the composites reported considerable growth i.e.,from 28 to 32 along with the increase in filler content. Differential scanning calorimetry results showed that sawdust particles have an insignificant effect on curing temperature (219℃) for the raise in sawdust content. Structure of the sawdust, benzoxazine monomer, polybenzoxazine and composites were studied using Fourier transformation infrared spectroscopy. Overall, polybenzoxazine composites with sawdust as filler showed improved thermal properties when compared with pure polybenzoxazine.

Preparation of Graphene/Polybenzoxazine Conductive Composite Thin Film through Thermal Treatment (열 처리를 통한 그래핀/폴리벤족사진 전도성 복합 박막 제조)

  • Ko, Young Soo;Cha, Ji-Jung;Yim, Jin-Heong
    • Polymer(Korea)
    • /
    • v.37 no.4
    • /
    • pp.513-517
    • /
    • 2013
  • A novel conductive composite thin film was prepared for the first time by hybridization between polybenzoxazine (PBZ) having high heat resistance property and conductive graphene. Mechanically robust conductive graphene/PBZ composite thin films could effectively be prepared by a simple thermal treatment, which simultaneously induces reduction of graphene oxide (GO) and crosslinking reaction of benzoxazine monomer. Graphene sheets seem to be uniformly dispersed up to 3 wt% graphene content in the composite thin film as shown in the results of chemical/crystal structural and morphological analyses. This efficient route for making graphene/PBZ composite thin film would provide simultaneous improvement of mechanical property as well as electrical conductivity.

Quantification for the Distribution of Hydrogen Bonding Species in Phenolic Model Compounds and Polybenzoxazines (페놀계 모델 화합물 및 폴리벤조옥사진 수지에 대한 수소결합분포의 정량화)

  • Kim, Ho-Dong;Moon, Hwa-Yeon
    • Textile Coloration and Finishing
    • /
    • v.20 no.4
    • /
    • pp.21-30
    • /
    • 2008
  • To understand the complex hydrogen bonding structure, several phenolic derivatives and benzoxazine model compounds are synthesized and characterized by Fourier transform infrared spectroscopy (FT-IR). The estimation of molar extinction coefficients for various types of hydrogen bonding species is systematically carried out by the curve-resolving of FT-IR spectra. The distribution of hydrogen bonding species in benzoxazine model dimers is quantitatively analyzed. It is revealed that benzoxazine dimers and BA-a polybenzoxazine are mainly composed of intramolecular interaction rather than intermolecular interaction.