• Title/Summary/Keyword: polyamine

Search Result 264, Processing Time 0.029 seconds

Enhanced tolerance through increasing polyamine contents in transgenic tobacco plants with antisense expression of ACC oxidase gene (ACC oxidase 발현 억제 식물체에서 폴리아민 생합성 증가에 의한 스트레스 저항성 증강)

  • Wi, Soo-Jin;Park, Ky-Young
    • Journal of Plant Biotechnology
    • /
    • v.38 no.1
    • /
    • pp.54-61
    • /
    • 2011
  • Antisense construct of cDNA for senescencerelated ACC oxidase (CAO) cDNA isolated from carnation flowers were introduced into tobacco by Agrobacteriummediated transformation. The decreasing expression of NtACO and the reduction of ethylene production were observed in these transgenic lines. In contrast, the SAMDC transcripts and spermidine content were increased. The findings that higher content of spermidine in the ethylene suppressed transgenic plants compared with wild-type should be directly resulted in the enhancement of SAMDC activity followed by the increased accumulation of SAMDC transcript. To investigate the pathogenic response in these transgenic plants, wild-type and transgenic plants were inoculated with Phytophthora parasitica pv. nicotianae. Transgenic plants suppressing ethylene production showed the increased resistance against fungal pathogen, comparing with wild-type plant. PR-protein genes expression in CAO-AS-2 and CAOAS-4 were also higher at the normal growth condition and pathogenic response than in wild-type plants. The results of higher spermidine content and SAMDC activity in transgenic plants, CAO-AS-2 and CAO-AS-4, support the possibility that an increase in spermidine content might induce the higher transcripts of PR-protein genes. This results agreed with the phenomena that spermidine promoted the expression of PR1a and a SAMDC inhibitor, MGBG, decreased the expression of PR1a in leaf discs. These results suggest that the resistance against fungal pathogen in transgenic tobacco impaired in ethylene production might be caused by increasing in polyamine, especially spermidine, biosynthesis.

Measurement of Biogenic Amines with a Chitopearl Enzyme Reactor (Chitopearl 효소 Reactor를 이용한 Biogenic Amines 측정)

  • Park, In-Seon;Kim, Dong-Kyung;Shon, Dong-Hwa;Cho, Yong-Jin;Kim, Nam-Soo
    • Korean Journal of Food Science and Technology
    • /
    • v.31 no.3
    • /
    • pp.593-599
    • /
    • 1999
  • Substrate specificity of a flow-injection-analysis (FIA)-type biogenic amine sensor with enzyme reactor was determined. The enzyme reactor was prepared with a diamine oxidase immobilized on preactivated chitosan porous beads (Chitopearl) by intramolecular cross-linking via glutaraldehyde. The sensor showed a rapid response to putrescine and a quasi-linear calibration curve was obtained up to 15.0 mM. The optimal pH and temperature of the enzyme reactor system were 7.5 and $35^{\circ}C$. Interferences due to ATP-related compounds and trimethylamine, and the effects of NaCl and amino acids were measured. Inhibitory effects owing to these components could be mitigated by sample extraction with perchloric acid. Polyamines except putrescine were determined by a putrescine calibration range within 26.7%. This system was confirmed as rapid and convenient for biogenic amine determination.

  • PDF

Cytoprotective Effects of Polyamines Against Oxidative Stress (산화 스트레스에 대한 폴리아민의 세포보호 효과)

  • Ahn Seoni;Lee Ji Young;Chung Hae Young;Yoo Mi-Ae;Kim Jong-Min;Kim Byeong Gee
    • Journal of Life Science
    • /
    • v.15 no.4 s.71
    • /
    • pp.626-632
    • /
    • 2005
  • The polyamines are essential components of all eukaryotic cells and absolutely necessary for cell growth. In the present study, the cytoprotective role of polyamine was characterized. When $Ac_2F$ rat liver cells were treated with 1M 2,2'-azobis (2-amidinopropane) dehydrochloride (AAPH), a water soluble free radical initiator, viability of the cells was noticeably decreased due to the increase of reactive oxygen species (ROS). The cytotoxic effect of AAPH as well as ROS generation were significantly inhibited by the treatment of polyamines. Among polyamines, especially spermine at $20{\mu}M$ concentration exerted over $45\%$ inhibition of AAPH-induced ROS generation. Western blotting was performed to determine whether superoxide dismutase(SOD) or catalase (CAT) expression was involved in oxidative stress. The AAPH treatment blocked both SOD and CAT protein expressions. Spermine could recover those protein expressions to the untreated control levels. According to the result of cycline E measurement, AAPH might block the entry of the cells into S phase of the cell cycle. The reduced expression of cyclin E protein could be fully recovered by the addition of spermine. The antioxidative effects of spermine was also further proved by the apopotitic morphological analysis using ethidium bromide and acridine orange.

Physiological Response of Chinese Cabbage to Salt Stress (염 스트레스에 대한 배추의 생리학적 반응)

  • Kim, Ju-Sung;Shim, Ie-Sung;Kim, Myong-Jo
    • Horticultural Science & Technology
    • /
    • v.28 no.3
    • /
    • pp.343-352
    • /
    • 2010
  • In order to understand the plant responses to salt stress (0, 50, and 100 mM NaCl), Chinese cabbage seedlings grown up to two leaf stages by hydroponic culture were used. Fresh and dry weight, chlorophyll (Chl), antioxidant materials, polyamine content, antioxidant enzyme activities, and inorganic ion level were evaluated. Fresh and dry weights of Chinese cabbage increased with the increase in salinity while the optimal growth occurred at 50 mM NaCl. The Chl a, total Chl, carotenoid content, and Chl a/b ratio increased by the 6 days after treatment with 100 mM NaCI; however, the Chl b content decreased. Glutathione increased in the root of Chinese cabbage for 6 days. Dehydroascorbate increased remarkably by day 6 caused by the salt stress in both leaf and the root. While ascorbate peroxidase increased, the activity of catalase and glutathione reductase decreased gradually in the first leaf for 6 days. The $Na^+$ content increased by 12.5-fold in the 3 days after treatment with 100 mM NaCI in the shoot, whereas the $Ca^{2+}$, $K^+$, and $Mg^{2+}$ content measured in the same treatment decreased by 43 to 57%. Spermidine content decreased as salinity increased, but spermine content increased. The growth promotion, glutathione and ascorbic acid content in Chinese cabbage were increased by low salt stress, and shortening of the cultivation period for growth increase of Chinese cabbage is expected.

Synthesis of Polymer-Silica Hybrid Particle by Using Polyamine Nano Complex (폴리아민 나노 복합체를 이용한 고분자-실리카 복합체 입자 합성)

  • Kim, Dong-Yeong;Seo, Jun-Hee;Lee, Byungjin;Kang, Kyoung-Ku;Lee, Chang-Soo
    • Clean Technology
    • /
    • v.27 no.2
    • /
    • pp.115-123
    • /
    • 2021
  • This study demonstrates a new method for the synthesis of organic-inorganic hybrid particles composed of an inorganic silica shell and organic core particles. The organic core particles are prepared with a uniform size using droplet-based microfluidic technology. In the process of preparing the organic core particles, uniform droplets are generated by independently controlling the flow rates of the dispersed phase containing photocurable resins and the continuous phase. After the generation of droplets in a microfluidic device, the droplets are photo-polymerized as particles by ultraviolet irradiation at the ends of microfluidic channels. The core particle is coated with a nano complex composed of polyallylamine hydrochloride (PAH) and phosphate ion (Pi) through strong non-covalent interactions such as hydrogen bonding and electrostatic interaction under optimized pH conditions. The polyamine nano complex rapidly induces the condensation reaction of silicic acid through the arranged amine groups of the main chain of PAH. Therefore, this method enabled the preparation of organic-inorganic hybrid particles coated with inorganic silica nanoparticles on the organic core. Finally, we demonstrated the synthesis of organic-inorganic hybrid particles in a short time under ambient and environmentally friendly conditions, and this is applicable to the production of organic-inorganic hybrid particles having various sizes and shapes.

Effect of Polyamines on Cellular Differentiation of N. gruberi: Inhibition of Translation of Tubulin mRNA

  • Yoo, Jin-Uk;Kwon, Kyung-Soon;Cho, Hyun-Il;Kim, Dae-Myung;Chung, In-Kwon;Kim, Young-Min;Lee, Tae-Ho;Lee, Joo-Hun
    • Journal of Microbiology
    • /
    • v.35 no.4
    • /
    • pp.315-322
    • /
    • 1997
  • The effects of a polyamine, spermine, on the differentiation of Naegleria gruberi amebas into flagellates were tested. Addition of spermine at early stages of differentiation (until 40 min after the initiation of differentiation) completely inhibited the differentiation. To understand the inhibition mechanism, we examined the effect of spermine treatment on the transcription and translation of differentiation-specific genes during differentiation. Addition of spermine at early stages did not inhibit the accumulation of two differentiation-specific mRNAs, ${\alpha}$-tubulin and Class I mRNA, significantly, but rather prevented the rapid degradation of the mRNAs in later overall protein synthesis partially and gradually. However, translation of the ${\alpha}$-tubulin mRNA was completely inhibited. These data suggest that the inhibition of differentiation of N. gruberi by spermine treatment did not result from the inhibition of transcription of differentiation-specific genes but from the specific inhibition of translation of the mRNAs during the differentiation.

  • PDF

Putrescine and Cadaverine Enhance Insulin Secretion of Mouse Pancreatic ${\beta}$-cell Line

  • Park, Hyo-Eun;Kim, Jae-Young
    • Biomedical Science Letters
    • /
    • v.18 no.3
    • /
    • pp.193-200
    • /
    • 2012
  • We examined the effects of polyamines such as putrescine and cadaverine on the biosynthesis and secretion of insulin in the mouse pancreatic ${\beta}$-cell line, MIN-6. Basal insulin secretion (BIS) and glucose-stimulated insulin secretion (GSIS) from the MIN-6 cells were significantly increased by 20 min- or 24 h-treatment with micromolar concentrations of polyamines. To determine whether the enhancement was due to increase of insulin production by polyamines, we investigated the insulin mRNA and protein production. Both insulin mRNA and protein production were found to be not significantly affected by the polyamine treatment. Next, we examined the expression of several transcription factors (TFs) related to insulin synthesis and secretion in order to identify upstream events responsible for the promotion of insulin secretion of MIN6 cells by polyamines. Of the 6 TFs tested, MafA was induced by treatment of polyamines. MafA mRNA and protein expressions increased with treatment of polyamines. Overall results suggest that cadaverine and putrescine promote the insulin secretion process rather than the insulin biosynthesis from MIN6 cells. Also MafA may be involved in the enhanced insulin secretion process. Further studies are needed to elucidate the underlying mechanisms for promotion of insulin secretion by polyamines.

Modulation of L-Arginine-Arginase Metabolic Pathway Enzymes: Immunocytochemistry and mRNA Expression in Peripheral Blood and Tissue Levels in Head and Neck Squamous Cell Carcinomas in North East India

  • Srivastava, Shilpee;Ghosh, Sankar Kumar
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.16
    • /
    • pp.7031-7038
    • /
    • 2015
  • Background: Arginine may play important roles in tumor progression by providing ornithine for polyamine biosynthesis, required for cell growth. The aim of this work was to determine the expression of arginine metabolic pathway enzymes in head and neck squamous cell carcinoma (HNSCC) in northeast India. Materials and Methods: The expressions of arginase isoforms (ARG1 and ARG2), ornithine aminotransferase (OAT) and ornithine decarboxylase (ODC) were examined in fifty paired HNSCC and adjacent non-tumor tissues by immunohistochemistry. Immunocytochemistry, semiquantitative reverse transcription sq-PCR and quantitative real-time qPCR were used to assess protein and mRNA expressions in peripheral blood of fifty HNSCC patients and hundred controls. Results: ARG1 and ODC protein and mRNA were strongly expressed in peripheral blood from HNSCC patients. No ARG2 expression was observed. In vivo, expression of ARG1, ARG2 and ODC was significantly higher in tumor than in non-tumor tissues. Most tumors expressed low levels of OAT, with no difference in tissues or blood, compared to controls. The absolute extent of maximal ARG1 upregulation with qPCR showed 6.23 fold increase in HNSCC. Conclusions: These findings strongly suggest that in HNSCCs, the ARG1 pathway is stimulated leading to the formation of polyamines as indicated by higher ODC expression, which promote tumor growth.

Effect of Cnidii Rhizoma on Proliferation of Breast Cancer Cell, Nitric Oxide Production and Ornithine Decarboxylase Activity (천궁이 유방암세포 증식, Nitric Oxide 생성 및 Ornithine Decarboxylase 활성에 미치는 영향)

  • Nam, Kyung-Soo;Son, Ok-Lye;Lee, Kyung-Hwa;Cho, Hyun-Jung;Shon, Yun-Hee
    • Korean Journal of Pharmacognosy
    • /
    • v.35 no.4 s.139
    • /
    • pp.283-287
    • /
    • 2004
  • The effect of water extract from Cnidii Rhizoma (CRW) on proliferation of human breast cancer cells, nitric oxide production, nitric oxide synthase expression, and ornithine decarboxylase activity was tested. CRW inhibited the growth of both estrogen-dependent MCF-7 and estrogen-independent MDA-MB-23I human breast cancer cells. Lipopolysaccharide-induced nitric oxide (NO) production was significantly reduced by CRW at the concentration of 0.5, 1.0 and 5.0 mg/ml. Expression of inducible nitric oxide synthase (iNOS) was also suppressed with the treatment of CRW in Raw 264.7 cells. CRW inhibited induction of ornithine decarboxylase by 12-0-tetradecanoylphorbol-13-acetate, a key enzyme of polyamine biosynthesis, which is enhanced in tumour promotion. Therefore, CRW is worth further investigation with respect to breast cancer chemoprevention or therapy.

Effect of Polyamines, Salt Strength, Sucrose, and Gelling Agents on plant Regeneration from Meristem Culture of Aloe spp. (알로에 생장점 배양시 식물체 재분화에 미치는 Polyamine, 염류농도, 당 및 Gelling Agent의 효과)

  • Yu, Chang-Yeon;Kim, Jae-Kwang;Lim, Jung-Dae
    • Korean Journal of Medicinal Crop Science
    • /
    • v.5 no.3
    • /
    • pp.186-190
    • /
    • 1997
  • This study was carried out to investigate the effect of polyamines, salt strength. sucrose and gelling agents on the regeneration of plantlets by meristem culture of Aloe arborescens Mill. and Aloe vera L.. Shoot multiplication was more effective when 10mg/ l spermine in Aloe arborescens and 1mg/ l spermidine in Aloe vera added into MS medium than when other polyamines were treated into media. A quarter strength of MS medium was effective for rooting of shoots regenerated. Higher concentration of sucrose (45g/ l) was more effective for shoot regeneration. Addition of 4g/ l gelrite into the medium was effective for induction of multiple shoots from Aloe than that of agar or other concentrations of gelrite. When plantlets regenerated from meristem culture were transferred to pot. survival rate of plantlets was 80% on perlite and was 95% on vermiculite. respectively.

  • PDF