• 제목/요약/키워드: polyamine

검색결과 264건 처리시간 0.033초

다제 내성 암세포에서의 Polyamine 특성 (Polyamines in Multi-drug Resistant Cancer Cells)

  • 권혁영;이종호;이동권
    • Biomolecules & Therapeutics
    • /
    • 제5권3호
    • /
    • pp.265-271
    • /
    • 1997
  • Since the advent of chemotherapy, certain types of cancer have been particularly resistant to chemotherapeutic treatment. One of the most well-studied types of resistance is resistance to multiple struc-turally dissimialr hydrophobic chemotherapeutic agents, or multidrug resistance (MDR). We found that MDR cells (KBV20C, KB7D) being highly resistant to colchicine, etoposide, and vincristine were found to have very low level of putrescine and low level of spermidine than the drug sensitive parental cells (KB) but they had almost same level of spermine as the drug sensitive cells. Although both MDR and drug sensitive cells had almost same rate of polyamine uptake, MDR cells were much more sensitive to an inhibitor of polyamine synthesis, methylglyoxal-bis guanylhydrazone (MGBG), suggesting that MDR cells might be defective in polyamine synthesis. These results also suggest that HGBG can be used for treatment of MDR in vivo.

  • PDF

Polyamine과 Polyamine의 생합성에 관련된 효소들의 시금치잎 세포내 분포에 관한 연구 (Studies on the Intracellular Localization of Polyamines and Their related Enzymes in Spinach Leaves)

  • 김성호
    • Journal of Plant Biology
    • /
    • 제32권4호
    • /
    • pp.285-292
    • /
    • 1989
  • The intracellular localizations of polyamines and their related enzymes were investigated from young spinach leaves. Polyamines were present in all parts of plant cells, both in the subcellular organelles and in the soluble fraction of cytoplasm, however, polyamines were mainly located in the cytosolic fraction. Most activities of L-arginine decarboxylase(ADC) and L-ornithine decarboxylase(ODC), two important enzymes of putrescine and polyamine biosynthesis, were detected in cytosol fraction, while in subcellular organelles the activities were very low. Activities of diamine oxidase(DAO) and polyamine oxidase(PAO), the catabolic enzyme of diamine and polyamine, were not detected in spinach leaves. It was suggested that polyamines and their related synthetic enzymes were located in the soluble fraction of cytoplasm.

  • PDF

Populus 잎절편의 극성분화시 내생 Polyamine의 함량과 Polyamine 생합성 효소의 활성도 변화 (Changes in Endogenous Polyamine Levels during Polar Regeneration from Populus Leaf Segments)

  • 김성호
    • Journal of Plant Biology
    • /
    • 제33권4호
    • /
    • pp.243-251
    • /
    • 1990
  • Polyamine titers and the activities of arginine decarboxylase(ADC) and ornithine decarboxylase (ODC), enzymes which catalyze rate-limiting steps in polyamine biosynthesis, were investigated during polar regeneration of Populus leaf segments. The polar regeneration occurred at the basal cut end of Populus leaf segments through cell division around the vascular bundle. In the process of polar regeneration, the titers of putrescine and spermidine increased rapidly but the content of spermine remained constant. The leaf segments were then divided into three separte part ; the proximal, middle and distal. Spermidine titers showed an increase mainly in the proximal parts where polar regeneration occurred. On the other hand, putrescine titers showed an increase in the other two parts. In the course of polar regeneration, the activities of ADC and ODC increased, the ADC activities being higher than those of ODC. However, ODC activity was higher in the proximal part. Therefore, the spermidine contents and ODC activities are suggested to be related to polar regeneration in Populus leaf segments.

  • PDF

Polyamine에 의한 옥수수 Ribosome의 활성 촉진 (Stimulation of Ribosome Activity of Zea mays by Polyamine)

  • 김기남
    • Journal of Plant Biology
    • /
    • 제36권1호
    • /
    • pp.83-90
    • /
    • 1993
  • As a part of the study on the relation between exogenous polyamines and various components necessary for protein biosynthesis in the germinating maize seeds, the effects of the polyamines on protein biosynthesis and irbosome activity were investigated. The protein biosynthesis activity by S-30 containing all components necessary for protein biosynthesis was increased by exogenous polyamines, spermidine, spermine and putrescine. As the concentration of polyamine treated was increased, the optimal Mg2+ concentration of in vitro poly U-dependent protein synthesis system was gradually reduced. However, the optimal Mg2+ concentration of poly U-dependent system containing optimal polyamine was 10 mM regardless of the sort of polyamine. It could be infered that polyamines play an important part in protein biosynthesis in the higher plant, and that the role of polyamines take partially the place of Mg2+ action. The activities of ribosome and S-100 in protein biosynthesis were increased by 46.7% and 17.7% with spermidine, and by 44.1% and 16.2% with spermine, and by 29.1% and 19.3% with putrescine. It could be concluded that the increase of protein biosynthesis by polyamines in mainly owing to the ribosome activation.

  • PDF

Photoperiodic Floral Induction in Pharbitis Cotyledons Affected by Polyamines and Ethylene

  • Jueson Maeng
    • Journal of Plant Biology
    • /
    • 제38권3호
    • /
    • pp.227-234
    • /
    • 1995
  • Exogenous putrescine of 0.5 mM or higher concentratons applied during a 16 h inductive dark period could elevate putrescine content in cotyledons of Pharbitis nil Choisy cv. Violet, a short-day plant, resulting in complete blocking of photoperiodic floral induction. Titers of putrescine, spermidine and spermine in the cotyledons were traced throughout a 16 h dark period. While non-induced cotyledons under continous light slightly increased levels of polyamines, induced tissue maintaiend its putrescine, spermidine and spermine levels as low as 66.4%, 60.9% and 84.9% of non-induced levels respecitvely. Endogenous polyamines kept at lower levels in the inductive dark period were found to upsurge by a night break treatment of 10 min light in the middle of the dark and consequently the inductive dark effect was canceled. Elevation of polyamine titers could also be induced by 100 $\mu$L/L ethylene treatment which completely suppressed floral induction. Compared to untreated cotyledons, ehtylene-treated tissues increased putrescine content by as much as 136.5% in 12 h and spermidine level by up to 130.1% in 8 h. Ethylene-treated cotyledons not only increased endogenous polyamine content but also liberate ethylene in the second half of the inductive dark period accumulating up to three to fourfold level supporting a hypothesis that ethylene-treated tissues are stimulated to produce ethylene which in turn accelerates polyamine biosynthesis in the tissues. It is postulated that substantially low polyamine titers in the inductive dark period would be one of the necessary factors controlling photoperiodic induction of flowering in Pharbitis nil and the inhibitory effects of night break and exogenous ethylene treatment may be atributed to their action to stimulate endogenous polyamine production.

  • PDF

Polyamines and Their Metabolites as Diagnostic Markers of Human Diseases

  • Park, Myung Hee;Igarashi, Kazuei
    • Biomolecules & Therapeutics
    • /
    • 제21권1호
    • /
    • pp.1-9
    • /
    • 2013
  • Polyamines, putrescine, spermidine and spermine, are ubiquitous in living cells and are essential for eukaryotic cell growth. These polycations interact with negatively charged molecules such as DNA, RNA, acidic proteins and phospholipids and modulate various cellular functions including macromolecular synthesis. Dysregulation of the polyamine pathway leads to pathological conditions including cancer, inflammation, stroke, renal failure and diabetes. Increase in polyamines and polyamine synthesis enzymes is often associated with tumor growth, and urinary and plasma contents of polyamines and their metabolites have been investigated as diagnostic markers for cancers. Of these, diacetylated derivatives of spermidine and spermine are elevated in the urine of cancer patients and present potential markers for early detection. Enhanced catabolism of cellular polyamines by polyamine oxidases (PAO), spermine oxidase (SMO) or acetylpolyamine oxidase (AcPAO), increases cellular oxidative stress and generates hydrogen peroxide and a reactive toxic metabolite, acrolein, which covalently incorporates into lysine residues of cellular proteins. Levels of protein-conjuagated acrolein (PC-Acro) and polyamine oxidizing enzymes were increased in the locus of brain infarction and in plasma in a mouse model of stroke and also in the plasma of stroke patients. When the combined measurements of PC-Acro, interleukin 6 (IL-6), and C-reactive protein (CRP) were evaluated, even silent brain infarction (SBI) was detected with high sensitivity and specificity. Considering that there are no reliable biochemical markers for early stage of stroke, PC-Acro and PAOs present promising markers. Thus the polyamine metabolites in plasma or urine provide useful tools in early diagnosis of cancer and stroke.

생체의 Polyamine-분석을 위하여 FNBT-유도체를 이용하는 간편하고 특이적이며 예민한 Isocratic RP-HPLC 분석법과 재생성 흰쥐-간의 Polyamine-대사의 변동에 관한연구 (A Simple, Sensitive, and Specific HPLC Analysis of Tissue Polyamines using FNBT Derivatization: Its Application on the Study of Polyamine Metabolism in Regenerating Rat Liver)

  • 최상현;김형건;박홍익;전보권
    • 대한약리학회지
    • /
    • 제24권2호
    • /
    • pp.233-240
    • /
    • 1988
  • 복잡한 시료-전처리과정을 배제하여 간편하고 선택적이며 예민한 polyamine 측정방법으로써 4-fluoro-3-nitrobenzotrifluoride (FNBT)유도체 및 단일이동상을 이용하는 역상의 고속액체 크로마토 그래피 (HPLC) 방법과 아울러 이 방법을 이용한 흰쥐의 재생성간내 polyamine대사의 변동에 관한 관찰-결과를 요약하면 다음과 같다. 1. 간내-polyamine은 0.4M perchloric acid에 추출한 후 Spragg와 Hutchings의 방법에 따라서 FNBT로 N-2'-nitro-4'-trifluoromethylphenyl polyamine (NTP-polyamine) 유도체를 만들고 이를HPLC로 분석 하였다. 2. HPLC-분석은 ERC ODS-1161 (3 um, $6{\times}100$ mm) column에서 분당 1.2ml 속도의 단일-이동상(acetonitril 80%의 물)으로 분리 하며 파장 242 nm로 검출-정량하였다. 3. HPLC-분석은 시료당 약20분이 소요되었는데, 크로마토그래피의 계치들에 있어서 각polyamine의 capacity factor는 putrescine: 4.12, spermidine: 9.25, 및 spermine: 18.75로써 완전한 분리도를 보였으며, 검량한계는 10 picomole이하의 높은 예민도를 나타내었고, 시료처리-과정의 회수율은 약 12.1-88.5%로써 비교적 안정하였다. 4. Higgins와 Anderson의 방법에 따라서 흰쥐의 간을 부분-절제한 결과 $70.4{\pm}1.99%$가 절제되고 $29.7{\pm}1.45%$가 남게 되었으며, 수술후 48시간 후에 남은 간은 생리식염수-처치군 및 methylglyoxal bis (guanylhydrazone) dihydrochloride (MGBG)-처치군에서 각각 수술 전 간의$52.1%$$53.3%$로 회복되었다. 5. 정상 간의 polyamine 함량은 각각 putrescine: $158.7{\pm}14.1$, spermidine: $829.7{\pm}36.4$, 및 spermine: $875.6{\pm}42.1$ nanomole/g wet liver이었고 ; 부분-절제하고 남은 간의 polyamine의 수술후변동에 있어서, 생리식염수-처치군의 putrescine과 spermine은 6시간까지의 유의한 증가를 보인다음 48시간에 정상치로 회복되었으나 spermidine은 48시간까지도 계속 증가하여 $2004.9{\pm}170.4nanomole/g$ wet liver가 되었다. MGBG-처치군의 spermidine 및 spermine 함량은 생리식염수군의 변동과 유사하였으나 putrescine의 함량은 6시간의 증가 후 계속 증가하여 48시간에는 $1806.5{\pm}159.4$ nanomole/g wet liver가 되었다. 이상의 성적으로 미루어 볼 때, 위의 단일 이등상의 역상-MPLC방법은 생체의 polyamine 정량분석을 위한 간편하고 예민하며 매우 선택적인 것으로 사료된다.

  • PDF

Polyamine계 고분자 응집제의 합성 및 상수 처리 특성 (Synthesis of Polyamine Type Flocculant and Properties in Potable Water Treatment)

  • 박이순;신준호;최상준;신명철;이석훈
    • 공업화학
    • /
    • 제9권4호
    • /
    • pp.542-547
    • /
    • 1998
  • 수질 환경의 악화에 따라 상수처리에 있어서 기존에 사용되어온 황산알루미늄 (Alum ; $Al_2(SO_4)_3$) 및 polyaluminum chloride (PAC) 등 무기계응집제만으로는 적절한 응집 효과를 얻기에 어려운 문제가 있다. 본 연구에서는 epichlorohydrin과 dimethylamine을 사용하여 poly(amine)계 고분자 응집제를 합성하는 조건에 대해 조사를 하였다. Polyamine의 합성에 있어서 위의 두 단량체 이외에 반응성기가 4인 1,6-hexandiamine을 분자량 중가제로 사용한 경우 dimethylamine 대비 5.5 mol % 이내의 범위에서 [${\eta}$]=0.46에 상당하는 branched polyamine 시료 (PA-c)를 얻을 수 있었으며 도입량이 5.5 mol % 이상인 경우에는 gel이 발생함을 확인하였다. 합성된 polyamine계 고분자 응집제의 응집 효율을 평가하기 위해서 낙동강 수계 매곡정수장의 pilot 장치에 적용하여 응집실험을 수행하였다. 응집 실험 결과 탁도 5~20 [NTU] 정도의 원수를 탁도 2.0 [NTU] 미만으로, 그리고 유기물 함량 (TOC) 제거 효율을 20~40%으로 하기 위하여 polyamine 고분자 응집제 1 mg/L를 병용함으로써 무기 응집제 PAC의 소모량을 15 mg/L, 즉 1/2 수준으로 감소 시킬 수 있었다. 무기 응집제 PAC를 단독으로 사용할 경우 원수의 pH가 9.0 이상이 될 경우 탁도 제거 효율이 현저하게 감소하였으나 poly(amine) 고분자 응집제를 1 mg/L의 농도로 병용함으로서 보다 더 넓은 PH 범위에 적용이 가능함을 확인하였다.

  • PDF

폴리에스테르-폴리아민 분산제의 합성 및 카본 분산 특성 (Synthesis of Polyester-Polyamine Dispersants and Their Carbon Dispersing Properties)

  • 손정매;육정숙;이상준;김주현;김남균;신지훈;김영운
    • Tribology and Lubricants
    • /
    • 제30권4호
    • /
    • pp.224-233
    • /
    • 2014
  • We prepared polyester-polyamines to improve the effect of carbon black dispersibility for use in thermal transfer ink, and synthesized polymeric dispersing agents by two-step reactions. In the first step, we made polyester by polycondensing 1,6-hexanediol and adipic acid. The resulting polymers had carboxylic acid, which was linked with polyamine via an acid-base reaction. We then characterized the polyester-polyamine structure by NMR spectroscopy and Fourier transform infrared spectroscopy (FT-IR). We also determined the basic characterizations such as total acid numbers (TAN) (5.0-67.5 mgKOH/g), hydroxyl values (27.1-67.5 mgKOH/g), and molar masses ($M_n=1.6-8.4kg\;mol^{-1}$) for the polyester and total base numbers (TBN) (15.3-57.1 mgKOH/g), hydroxyl values (33.0-79.8 mgKOH/g), and nitrogen contents (1.02-3.48%) for the polyester-polyamine polymers. We thus prepared thermal transfer ink using carbon blacks and the polyester-polyamine dispersing agents, and evaluated the resulting mixtures for printability, adhesive force, storage stability, ink appearance, ink gloss, and processability. These mixtures showed significant dispersibility for carbon black in the ink. Thus, we concluded that the dispersibility of the polymeric materials depended on the polyamine structure and the hydrophilicity-hydrophobicity distribution of the polymeric dispersants.

숙주의 발아과정 동안 폴리아민 생합성과 Diamine 산화효소에 대한 스트론티움 효과 (Effect of Strontium on Polyamine Synthesis and Diamine Oxidase during the Germination of Mung Bean (Vigna radiata L.))

  • 김태완;권영업;윤승길
    • 한국토양비료학회지
    • /
    • 제36권6호
    • /
    • pp.437-444
    • /
    • 2003
  • 본 연구는 고등식물 세포 내 대사작용에 대한 스트론티움의 역할을 구명하고자 수행되었다. Strontium에 의한 diamine 산화효소의 활성화로 putrescine의 함량은 감소하였다. 배축에서의 diamine 산화효소의 활성은 $0.5-1.8\;mol\;putrescine\;oxidation\;mg^{-1}\;protein\;min^{-1}$이었다. 자엽에서의 putrescine 감소는 적어도 diamine 산화효소에 의한 putrescine의 산화의 결과였다. 더 나아가 strontium 1-10 mM 처리에 의해 spermidine과 spermine 의 축적이 관찰되었다. strontium이 없는 대조구에 비해 spermldine은 2-3배 증가하였다. 이러한 증가는 생체중을 기준으로 하였을 경우뿐만 아니라 RNA를 기준으로 하였을 경우에도 동일한 결과였다. 결론적으로 이러한 결과는 strontium이 diamine 산화 및 polyamine 축적과 같은 polyamine의 대사와 관련되어있음을 보여주었다.