• Title/Summary/Keyword: polyamide

Search Result 409, Processing Time 0.02 seconds

Overview of Hydrolysis : A Review Part II- Hydrolysis Application

  • Kim, Kwang-Jea
    • Elastomers and Composites
    • /
    • v.55 no.2
    • /
    • pp.137-146
    • /
    • 2020
  • Part 1 provides a theoretical introduction of the hydrolysis mechanism, while Part 2 introduces other types of reaction mechanisms after hydrolysis in elastomer and PA66 composites. We reviewed the condensation reaction, which occurs after hydrolysis in bi-functional alkoxy silane (TESPD & TESPT), and investigated its effects on the mechanical properties of the composites. We also reviewed activators such as zinc soap, which enhances the mechanical properties of silica-silane-filled elastomer composites. The interaction parameter of silica-silane-filled elastomer composites [αC (alpha C)] were also discussed. The effects of hydrolysis on the mechanical property changes in plastic composites were compared and reviewed.

Overview of Hydrolysis : A Review Part I- Hydrolysis Mechanism

  • Kim, Kwang-Jea
    • Elastomers and Composites
    • /
    • v.55 no.2
    • /
    • pp.128-136
    • /
    • 2020
  • The hydrolysis mechanisms as well as the hydrolysis measurement technique and its practical applications in material manufacturing fields are revised. This chapter, Part 1, elaborates the theoretical aspects of the hydrolysis mechanism. Acid-catalyzed and base-catalyzed hydrolysis mechanisms are reviewed. The quantitative analysis method based on the SIM technique using py-GC-MS is reviewed. Examples of hydrolysis of alkoxysilane in elastomer composites currently used in the industry and hydrolysis of amine in plastic composites are shown. Moreover, Part 2 discusses the mechanical property changes in elastomer and plastic composites after hydrolysis.

Inverse HPLC approach for the evaluation of repulsive interaction between ionic solutes and a membrane polymer

  • Kiso, Yoshiaki;Kamimoto, Yuki;Hosogi, Katsuya;Jung, Yong-Jun
    • Membrane and Water Treatment
    • /
    • v.6 no.2
    • /
    • pp.127-139
    • /
    • 2015
  • Rejection of ionic solutes by reverse osmosis (RO) and nanofiltration (NF) membranes is controlled mainly by electrochemical interaction as well as pore size, but it is very difficult to directly evaluate such electrochemical interaction. In this work, we used an inverse HPLC method to investigate the interaction between ionic solutes and poly (m- phenylenediaminetrimesoyl) (PPT), a polymer similar to the skin layer of polyamide RO and NF membranes. Silica gel particles coated with PPT were used as the stationary phase, and aqueous solutions of the ionic solutes were used as the mobile phase. Chromatographs obtained for the ionic solutes showed features typical of exclusion chromatographs: the ionic solutes were eluted faster than water (mobile phase), and the exclusion intensity of the ionic solute decreased with increasing solute concentration, asymptotically approaching a minimum value. The charge density of PPT was estimated to be ca. 0.007 mol/L. On the basis of minimum exclusion intensity, the exclusion distances between a salt and neutralized PPT was examined, and the following average values were obtained: 0.49 nm for 1:1 salts, 0.57 nm for 2:1 salts, 0.60 nm for 1:2 salts, and 0.66 nm for 2:2 salts. However, $NaAsO_2$ and $H_3BO_3$, which are dissolved at neutral pH in their undissociated forms, were not excluded.

Surface Modification of Reverse Osmosis Membrane Skin Layer by Silane Compound (Silane 화합물을 이용한 역삼투막 활성층의 표면개질)

  • Lee Yong-Taek;Shin Dong-Ho;Kim No-Won
    • Membrane Journal
    • /
    • v.16 no.2
    • /
    • pp.106-114
    • /
    • 2006
  • This study is concerned with preparation of chlorine resistant (CR) thin layer composite (TFC) membranes. The novel method for making CR membranes from commercially available RO membranes is based on sol-gel condensation of trialkoxyalkylsilane derivatives. The silane coupling agents used in this study have different number of alkyl carbon chain group (methyltriethoxysilane; METES and octyltriethoxysilane; OCTES). The OCTES composite membranes have a significant tolerance to chlorine compared to commercial polyamide RO membrane or METES composite membranes. The surface properties of membranes were examined to explain a significant difference of chlorine tolerance between OCTES composite membrane and the other two membranes. In this study, we tried several surface analyses to explain difference of chlorine tolerance. The element composition results of surface analysis by EDX confirmed that both silane fixed on polyamide firmly, The surface roughness and contact angle results showed long chain alkyl group of OCTES enhancing hydrophobicity considerably than METES. The hydrophobicity plays an important role in chlorine resistance of membrane.

Reactive blends of poly(butylene terephthalate)/polyamide-6 with ethylene glycidyl methacrylate

  • Han, M.S.;Lim, B.H.;Jung, H. C.;Hyun, J.C.;Kim, S.R.;Kim, W.N.
    • Korea-Australia Rheology Journal
    • /
    • v.13 no.4
    • /
    • pp.169-177
    • /
    • 2001
  • Morphological, thermal, rheological, and mechanical properties of reactive compatabilized blends of poly(butylene terephthalate) (PBT) and Polyamide-6 (PA) containing EGMA copolymer were investigated using scanning electron microscopy (SEM), differential scanning calorimetry (DSC), advanced rheometric expansion system (ARES), and universal testing machine (UTM). From the results of thermal analysis by DSC, the melting point of the 30/70 PBT-PA blend was broadened after EGMA was added in the blends, since the enthalpy of melting of the PBT-PA somewhat decreased with the increase of EGMA content. From this result, it is suggested that the EGMA affected to the crystallization behavior and crystallinity of the PBT-PA blends. From SEM micrographs of the 70/30, 50/50, and 30/70 PBT-PA blends, the droplet size of the 30/70 PBT-PA blend was about 0.8 ${\mu}{\textrm}{m}$ which was smaller than that of the 50/50 and 70/30 PBT-PA blends. The complex viscosity of the 30/70 PBT-PA blend observed to be higher than that of the 50/50 and 70/30 PBT-PA blends. From the results of the morphology and rheological properties for the PBT-PA blends, it is suggested that the compatibility is increased in the 30/70 PBT-PA blend than the 50/50 and 70/30 PBT-PA blends. From the results of mechanical properties, it was found that the tensile strength of the 30/70 PBT-PA blend increased with the increase of EGMA up to 2 phr, while tensile strength of the blend in which EGMA content was higher than 2 phr decreased with the increase of EGMA content. From the results of morphological, thermal, rheological, and mechanical properties for the PBT-PA-EGMA blends, it is suggested that the EGMA could be used as a compatibilization role in the blends.

  • PDF

Preparation and Characterization of Polyamide Thin Film Composite Reverse Osmosis Membranes Using Hydrophilic Treated Microporous Supports (친수성 처리된 다공성 지지체를 이용한 폴리아마이드 박막 역삼투 복합막 제조 및 특성 분석)

  • Son, Seung Hee;Jegal, Jonggeon
    • Membrane Journal
    • /
    • v.24 no.4
    • /
    • pp.317-324
    • /
    • 2014
  • It is very well known that the conventional polyamide (PA) thin film composite (TFC) reverse osmosis (RO) membranes have excellent permselective properties, but their chlorine tolerance is not good enough. In this study, to improve such chlorine tolerance, microporous membranes containing hydrophilic functional groups such as -COOH were used as a support to prepare PA TFC RO membranes, employing the conventional interfacial polymerization method. Meta-phenylene diamine (MPD) and 2,6-diamine toluene (2,6-DAT) were used as diamine monomers and tri-mesoyl chloride (TMC) as an acid monomer. The membranes prepared were characterized using various instrumental analytical methods and permeation test set-up. The flux obtained from the membranes prepared so was more than $1.0m^3/m^2day$ at 800 psi of operating pressure, while the salt rejection was over 99.0%. The chlorine tolerance of them was also found to be better than that of the membrane prepared by using conventional polysulfone support without hydrophilic functional groups.

Antioxidative Activity of Flavonoids Isolated from Jindalrae Flowers (Rhododendron mucronulatum Turcz.) (진달래꽃으로부터 분리된 플라보노이드 화합물의 항산화성에 관한 연구)

  • Kim, Mi-Ae;Jones, A. Daniel;Chung, Tae-Yung
    • Applied Biological Chemistry
    • /
    • v.39 no.4
    • /
    • pp.320-326
    • /
    • 1996
  • Seven antioxidative flavonoids were isolated from Jindalrae flowers (Rhododendron mnonulatum Turcz.), an edible plant in Korea. These compounds were identified as afzelin, ampelopsin, catechin, myricetin, myricitrin, quercetin and quercitrin on the basis of IR, UV, FAB-MS, $^1H\;NMR,\;and\;^{13}C\;NMR$ data. These compounds were consisted of two flavonols, three flavonol glycosides, a flavane, and a dihydroflavonol. The flavonol glycosides (14.4 g) present in th ethyl ether and ethyl acetate fractions comprised up to 82% of their total flavonoid amount (17.6 g) finally recovered by means of polyamide C-200 column chromatography, preparative TLC, recrystallization, and Sephadex LH-20 column chromatography. The antioxidant activities were measured in an ethanol solution of linoleic acid in the presence of ferric thiocyanate. The antioxidant efficiency increased in the order of afzrlin<$\alpha-tocopherol$

  • PDF

Fabrication of Polyethylene Films Coated with Antimicrobials in a Binder and Their Application to Modified Atmosphere Packaging of Strawberries (결착제 함유 항균성 물질로 코팅한 폴리에틸렌 필름의 제조 및 이를 이용한 딸기의 환경기체조절포장)

  • 김영민;이상백;조성환;이동선
    • Food Science and Preservation
    • /
    • v.7 no.1
    • /
    • pp.12-18
    • /
    • 2000
  • As am economical and effective way of antimicrobial film fabrication , antimicrobial agents were coated on the LDPE film with a binder mediu. the fabricated films were then applied tomodified atmosphere packaging of fresh strawberries. A binder of polyamide was selected for the coating medium, based on the stability in water. 1% grapefruit seed extract-coated film showed the antimicrobial activity on the plate media against EScherichia coli, Staphylococcus aureus, bacillus subtilis , Bacillus cereus, Leuconostoc mesenteroides, Micrococcus flavus, Saccharomyces cerevisiae, while one with 10% Coptis chinesis extract inhibited only M. 림편 and one coated with 10% rheum palmatum extract did not inhibit any of 10 strains tested. The packages of fresh strawberries by using antimicrobial agents-coated films created the gas compositions of O2 1.4-5.5% and CO2 5.7-7.9%, and contributed to reduced growth of total aerobic bacteria and yeast/molds on the produced. However, their lower microbial count was not correlated directly with the reduced decay of the fruits.

  • PDF