• Title/Summary/Keyword: poly-L-lactic acid

Search Result 118, Processing Time 0.026 seconds

MD Simulation of PLA-PEG Composites for Additive Manufacturing (적층 가공에서 적용 가능한 PLA-PEG 복합재료의 MD Simulation)

  • Songhee Ham;Youngjoon Jeon
    • Applied Chemistry for Engineering
    • /
    • v.34 no.3
    • /
    • pp.285-290
    • /
    • 2023
  • Poly-lactic acid (PLA) is the most promising polymer in additive manufacturing as an alternative to acrylonitrile butadiene styrene (ABS). Since it is produced from renewable resources such as corn starch and sugar beets, it is also biocompatible and biodegradable. However, PLA has a couple of issues that limit its use. First, it has a comparatively low glass transition temperature of around 60 ℃, such that it exhibits low thermal resistance. Second, PLA has low impact strength because it is brittle. Due to these problems, scientists have found methods to improve the crystallinity and ductility of PLA. Polyethylene glycol (PEG) is one of the most studied plasticizers for PLA to give it chain mobility. However, the blend of PLA and PEG becomes unstable, and phase separation occurs even at room temperature as PEG is self-crystallized. Thus, it is necessary to investigate the optimal mixing ratio of PLA-PEG at the molecular scale. In this study, molecular dynamics will be conducted with various ratios of L-type PLA (PLLA) or DL-type PLA-PEG (PDLA-PEG) systems by using BIOVIA Materials Studio.

Controlled Release of Paclitaxel from Biodegradable Polymer Films for Drug-Eluting Stents (약물방출 스텐트용 생분해성 고분자 필름으로부터 파크리탁셀의 조절 방출)

  • Kim, Si-Eun;Lee, Bong-Soo;Kim, Jin-Hyang;Park, Kwi-Deok;Han, Dong-Keun
    • Polymer(Korea)
    • /
    • v.34 no.2
    • /
    • pp.172-177
    • /
    • 2010
  • Although many researchers have studied the efficacy of paclitaxel (PTX) on many cells during the last two decades, little work has been reported on the importance of release kinetics inhibiting cell proliferation. The aim of this study is to examine the release behavior of the PTX on various biodegradable polymers such as poly(lactic-co-glycolic acid)(PLGA), poly-L-lactide (PLLA), and polycaprolactone (PCL) for drug-eluting stents (DES). The PTX from the fabricated films was released for 8 weeks and the degree of degradation of the films was observed by FE-SEM. Although the degradation time of PCL was the slowest, the PTX release rate was the fastest among them and followed by PLGA and PLLA with the equivalent PTX concentration. It suggests that hydrophobic drug such as PTX from polymer with low $T_g$ like PCL could be moved easily and released rapidly in body temperature.

Synthesis and Characterization of Linear and Star-shaped Poly(lactic acid) Stereo-block Copolymers (선형 및 스타형 폴리락트산 입체블록 공중합체의 합성 및 물성)

  • 이선영;김지흥
    • Polymer(Korea)
    • /
    • v.24 no.5
    • /
    • pp.638-645
    • /
    • 2000
  • Linear and star-shaped, poly(lactic acid) (PLA) stereo-block copolymers were synthesized by sequential polymerization of DL-lactic acid and L-lactide in the presence of diol or polyol compounds. The molecular weight of block copolymers could be controlled to some extent by the variation of alcohol content. These block copolymers had relatively narrow molecular weight distributions. The glass transition temperature and melting temperature of block copolymers appeared at around 5$0^{\circ}C$ and 100~14$0^{\circ}C$, respectively. The block copolymers were found to crystallize even at the high D-stereoisomer concentration of 35 mol%, in contrast to the amorphous nature of the random copolymer with similar composition. Also we could observe the crystallinity of PLA stereo-block copolymers varying with annealing temperature and time.

  • PDF

Properties of polypropylene fibers using the green chemical orotic acid as nucleating agent

  • Vogel, Roland;Brunig, Harald;Haussler, Liane
    • Advances in materials Research
    • /
    • v.4 no.4
    • /
    • pp.207-214
    • /
    • 2015
  • It has been reported in the technical literature that orotic acid can be used in order to induce improved crystallization of biodegradable and biocompatible polymers like poly(L-lactic acid), polyhydroxybutyrate and poly(hydroxybutyrate-co-hydroxyhexaonat). The expected advantage of the changed crystalline structure is a reinforcing effect of the polymers. A lot of papers reported about the application of inorganic and organic agents for acceleration of heterogeneous nucleation. This study reports on an attempt to use orotic acid as appropriate non-toxic nucleating agent for improving mechanical properties of isotactic polypropylene. Special attention is given to demonstrate the effect of nucleation in a typical melt spinning process in order to improve the mechanical properties. The effects were demonstrated using rheology, thermal analysis and tensile testing.

Improved Biocompatibility of Intra-Arterial Poly-L-Lactic Acid Stent by Tantalum Ion Implantation : 3-Month Results in a Swine Model

  • Kim, Kangmin;Park, Suhyung;Park, Jeong Hwan;Cho, Won-Sang;Kim, Hyoun-Ee;Lee, Sung-Mi;Kim, Jeong Eun;Kang, Hyun-Seung;Jang, Tae-Sik
    • Journal of Korean Neurosurgical Society
    • /
    • v.64 no.6
    • /
    • pp.853-863
    • /
    • 2021
  • Objective : Biodegradable poly-L-lactic acid (PLLA) with a highly biocompatible surface via tantalum (Ta) ion implantation can be an innovative solution for the problems associated with current biodegradable stents. The purpose of this study is to develop a Taimplanted PLLA stent for clinical use and to investigate its biological performance capabilities. Methods : A series of in vitro and in vivo tests were used to assess the biological performance of bare and Ta-implanted PLLA stents. The re-endothelialization ability and thrombogenicity were examined through in vitro endothelial cell and platelet adhesion tests. An in vivo swine model was used to evaluate the effects of Ta ion implantation on subacute restenosis and thrombosis. Angiographic and histologic evaluations were conducted at one, two and three months post-treatment. Results : The Ta-implanted PLLA stent was successfully fabricated, exhibiting a smooth surface morphology and modified layer integration. After Ta ion implantation, the surface properties were more favorable for rapid endothelialization and for less platelet attachment compared to the bare PLLA stent. In an in vivo animal test, follow-up angiography showed no evidence of in-stent stenosis in either group. In a microscopic histologic examination, luminal thrombus formation was significantly suppressed in the Ta-implanted PLLA stent group according to the 2-month follow-up assessment (21.2% vs. 63.9%, p=0.005). Cells positive for CD 68, a marker for the monocyte lineage, were less frequently identified around the Ta-implanted PLLA stent in the 1-month follow-up assessments. Conclusion : The use of a Ta-implanted PLLA stent appears to promote re-endothelialization and anti-thrombogenicity.

Study on PLLA Alloys with Impact Modifier and Talc (충격 보강제와 탈크를 이용한 PLLA 얼로이 연구)

  • Jeong, Dong-Seok;Nam, Byeong-Uk;Jang, Mi-Ok;Hong, Chae-Hwan
    • Elastomers and Composites
    • /
    • v.45 no.2
    • /
    • pp.129-136
    • /
    • 2010
  • In this work, PLLA/EGMA blends were prepared by melt blending of biodegradable Poly-L-lactic acid(PLLA) with Poly(ethylene-co-glycidyl methacrylate)(EGMA) and Engage as impact modifiers by twin screw extruder. Blend compositions of PLLA/Impact modifier blends were 100/0, 75/25, 50/50, 25/75 and 0/100, respectively. Also, Talc was added to 3 PLLA rich phases on PLLA/EGMA blends. The morphology, viscoelastic/mechanical properties were characterized by FESEM, DMA, UTM and Izod impact tester. DMA and Izod impact test data showed that storage modulus at room temperature with increasing EGMA and Engage contents decreased, and impact strength increased. However, storage modulus at room temperature increased by adding talc. From FESEM image, we observed that domain phase was well dispersed into matrix. Although the tensile strength and flexural modulus were decreased with increasing the content of EGMA and Engage in them, they could be supplemented by adding talc.

Induction of Potent Antigen-specific Cytotoxic T Cell Response by PLGA-nanoparticles Containing Antigen and TLR Agonist

  • Lee, Young-Ran;Lee, Young-Hee;Kim, Ki-Hyang;Im, Sun-A;Lee, Chong-Kil
    • IMMUNE NETWORK
    • /
    • v.13 no.1
    • /
    • pp.30-33
    • /
    • 2013
  • Previously we showed that biodegradable nanoparticles containing poly-IC or CpG oligodeoxynucleotide (ODN) together with ovalbumin (OVA) were efficient at inducing MHC-restricted presentation of OVA peptides in dendritic cells. The CTL-inducing activities of the nanoparticles were examined in the present study. Nanoparticles containing poly-IC or CpG ODN together with OVA were prepared using biodegradable polymer poly(D,L-lactic acid-co-glycolic acid), and then were opsonized with mouse IgG. The nanoparticles were injected into the tail vein of mice, and 7 days later the OVA-specific CTL activities were measured using an in vivo CTL assay. Immunization of mice with the nanoparticles containing poly-IC or CpG ODN together with OVA elicited potent OVA-specific CTL activity compared to those containing OVA only. In accordance with these results, nanoparticles containing poly-IC or CpG ODN together with OVA exerted potent antitumor activity in mice that were subcutaneously implanted with EG7.OVA tumor cells. These results show that encapsulation of poly-IC or CpG ODN together with antigen in biodegradable nanoparticles is an effective approach for the induction of potent antigen-specific CTL responses in vivo.

Acrylic Acid-Grafted Hydrophilic Electrospun Nanofibrous Poly(L-lactic acid) Scaffold

  • Park, Kwi-Deok;Jung, Hyun-Jung;Kim, Jae-Jin;Ahn, Kwang-Duk;Han, Dong-Keun;Ju, Young-Min
    • Macromolecular Research
    • /
    • v.14 no.5
    • /
    • pp.552-558
    • /
    • 2006
  • Biodegradable nanofibrous poly(L-lactic acid) (PLLA) scaffold was prepared by an electrospinning process for use in tissue regeneration. The nanofiber scaffold was treated with oxygen plasma and then simultaneously in situ grafted with hydrophilic acrylic acid (AA) to obtain PLLA-g-PAA. The fiber diameter, pore size, and porosity of the electrospun nanofibrous PLLA scaffold were estimated as $250\sim750nm,\;\sim30{\mu}m$, and 95%, respectively. The ultimate tensile strength was 1.7 MPa and the percent elongation at break was 120%. Although the physical and mechanical properties of the PLLA-g-PAA scaffold were comparable to those of the PLLA control, a significantly lower contact angle and significantly higher ratio of oxygen to carbon were notable on the PLLA-g-PAA surface. After the fibroblasts were cultured for up to 6 days, cell adhesion and proliferation were much improved on the nanofibrous PLLA-g-PAA scaffold than on either PLLA film or unmodified nanofibrous PLLA scaffold. The present work demonstrated that the applications of plasma treatment and hydrophilic AA grafting were effective to modify the surface of electrospun nanofibrous polymer scaffolds and that the altered surface characteristics significantly improved cell adhesion and proliferation.

Study on Biocompatibility and Morphology with Hydrolysis Degradation of Poly(ester amide) derived from Glycine and/or 4-Aminobutyric acid (Glycine and/or 4-aminobutyric acid로부터 유도된 Poly(ester amide)의 생체 적합성 및 분해에 따른 형태학적 고찰)

  • 한상일;임승순
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2002.04a
    • /
    • pp.49-52
    • /
    • 2002
  • 합성 고분자의 생분해는 환경 보존이라는 측면에서 중요시 되고 있으며 봉합사나 bone fixation, 그리고 implant와 같은 의학적 응용면에서도 상당한 관심의 대상이 되어오고 있다 glycolic acid, L-lactic acid, $\varepsilon$-caprolactone에 근거하는 지방족 폴리에스터는 생분해성 봉합사로서 응용되고 있으나 여전히 열적, 기계적 가공특성과 같은 적정특성들이 부족하다.$^1$ 한편 폴리아마이드는 유사한 구조를 갖는 폴리에스터와 비교할 때에 상대적으로 높은 유리전이온도와 높은 융점을 가지고 있는 반면 높은 흡습성으로 인한 물성저하가 야기될 수 있다. (중략)

  • PDF

Preparation of Highly Porous Poly(d,l-lactic-co-glycolic acid) (PLGA) Microspheres (다공성 PLGA 마이크로입자 제조법의 최적화 연구)

  • Park, Hong-Il;Kim, Huyn-Uk;Lee, Eun-Seong;Lee, Kang-Choon;Youn, Yu-Seok
    • Journal of Pharmaceutical Investigation
    • /
    • v.39 no.3
    • /
    • pp.167-171
    • /
    • 2009
  • Poly(lactic-co-glycolic acid) (PLGA) microspheres have been a useful tool as a controlled drug delivery system for peptides and proteins. Recently, porous microspheres have gained great attention as inhalation drug delivery system due to their low aerodynamic densities. Here, we report highly porous PLGA microspheres, which were prepared by using a single o/w emulsification/solvent evaporation method. Two types of porogen, i.e., (i) extractable Pluronic F127 and (ii) gas foaming salt of ammonium bicarbonate, were used to induce pores on the surface of PLGA microspheres. The respective preparation conditions on dp/cp ratio and porogen concentration were determined by the previous preliminary experiments, and other preparation factors were further optimized on the basis of PLGA Mw and porogen type. The morphological features examined by scanning electron microscope (SEM) show these porous microspheres have highly porous surface structure with a diameter range of 20${\sim}$30 ${\mu}$m. These highly porous PLGA microspheres, which have much lower density, would be a practical aerosol system for pulmonary drug delivery.