• Title/Summary/Keyword: poly-(ADP-ribose) polymerase

Search Result 397, Processing Time 0.023 seconds

Inhibition of cell growth and induction of apoptosis by bilobalide in FaDu human pharyngeal squamous cell carcinoma

  • Jeong, Kyung In;Kim, Su-Gwan;Go, Dae-San;Kim, Do Kyungm
    • International Journal of Oral Biology
    • /
    • v.45 no.1
    • /
    • pp.8-14
    • /
    • 2020
  • Bilobalide isolated from the leaves of Ginkgo biloba has several pharmacological activities such as neuroprotective, anti-inflammatory, and anticonvulsant. However, the effect of bilobalide on cancer has not been clearly established. The main purpose of this study was to investigate the effect of bilobalide on cell growth and apoptosis induction in FaDu human pharyngeal squamous cell carcinoma. This was examined by 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide assay, nuclear 4′,6-diamidino-2-phenylindole dihydrochloride staining, DNA fragmentation analysis, and immunoblotting. Bilobalide inhibited the growth of FaDu cells in dose- and time-dependent manners. Treatment with bilobalide resulted in nuclear condensation and DNA fragmentation in FaDu cells. Furthermore, it promoted the proteolytic cleavage of procaspase-3/-7/-8/-9 with increase in the amount of cleaved caspase-3/-7/-8/-9. Bilobalide-induced apoptosis in FaDu cells was mediated by the expression of Fas and the activation of caspase-8, caspase-3, and poly (ADP-ribose) polymerase. Immunoblotting revealed that the antiapoptotic mitochondrial protein Bcl-2 was downregulated, but the proapoptotic protein Bax was upregulated by bilobalide in FaDu cells. Bilobalide significantly increased Bax/Bcl-2 ratio. These results suggest that bilobalide inhibits cell proliferation and induces apoptosis in FaDu human pharyngeal squamous cell carcinoma via both the death receptor-mediated extrinsic apoptotic pathway and the mitochondrial-mediated intrinsic apoptotic pathway.

Water Extracts of Anthriscus sylvestris Leaf induces Apoptosis in FaDu Human Hypopharynx Squamous Carcinoma Cells

  • Yang, Jung Eun;Lee, Seul Ah;Moon, Sung Min;Han, Seul Hee;Choi, Yun Hee;Kim, Su-Gwan;Kim, Do Kyung;Park, Bo-Ram;Kim, Chun Sung
    • International Journal of Oral Biology
    • /
    • v.42 no.2
    • /
    • pp.47-54
    • /
    • 2017
  • Anthriscus sylvestris (L.) Hoffm. is a perennial herb found widely distributed in various regions of Korea, Europe, and New Zealand. The root of A. sylvestris have been extensively used in the treatment for antitussive, antipyretic, cough remedy in Oriental medicine, but the physiologically active function of the leaf of A. sylvestris is as yet unknown. In this study, we investigated the anti-cancer activity and the mechanism of cell death of water extracts of leaf of Anthriscus sylvestris (WELAS), on human FaDu hypopharyngeal squamous carcinoma cells. Our data showed that WELAS treatment inhibited cell viability in a concentration- and time-dependent manner. In addition, the treatment of WELAS markedly induced apoptosis in FaDu cells, as determined by the viability assay, DAPI stain and FACS analysis. WELAS also increased the proteolytic cleavage of procaspase-3, -9 and PARP (poly(ADP-ribose) polymerase). In addition, exposure to WELAS decreased the expression of Bcl-2 (an anti-apoptotic factor), but increased the expression of Bax (a pro-apoptotic factor), suggesting that mitochondria-dependent apoptotic pathways are mediated in WELAS-induced apoptosis. Taken together, these results indicate that water extracts of leaf of A. sylvestris inhibits cell growth and induces apoptosis via the mitochondrial-dependent apoptotic pathway in FaDu human hypopharyngeal squamous carcinoma cells. Therefore, we propose that the water extracts of leaf of A. sylvestris is a novel chemotherapeutic drug, having growth inhibitory properties and induction of apoptosis in human oral cancer cells.

In-Jin-Ho-Tang as a potential anti-cancer drug by induction of apoptosis in HepG2 cells

  • Yun, Hyun-Jeong;Heo, Sook-Kyoung;Park, Won-Hwan;Park, Sun-Dong
    • Advances in Traditional Medicine
    • /
    • v.9 no.2
    • /
    • pp.106-114
    • /
    • 2009
  • Hepatocellular carcinoma is the world's most common primary malignant tumor of the liver. In-Jin-ho-Tang (IJHT) has been used as a traditional Chinese herbal medicine since ancient times, and today it is widely used as a medication for jaundice associated with inflammation of the liver. In-Jin-Ho-Tang is a drug preparation consisting of three herbs: Artemisiae Capillaris Herba (Artemisia capillaries $T_{HUNS}$, Injinho in Korean), Gardeniae Fructus (Gardenia jasminodes $E_{LLIS}$, Chija in Korean) and Rhei radix et rhizoma (Rheum palmatum L., Daehwang in Korean). This study investigated whether or not methanol extract of IJHT could induce HepG2 cancer cell death. Cytotoxic activity of IJHT on HepG2 cells was measured using an XTT assay, with an $IC_{50}$ value of $700{\mu}g/ml$ at 24 h Apoptosis induction by IJHT in HepG2 cells was verified by the cleavage of poly ADP-ribose polymerase, and a decrease in procaspase-3, -8, -9. Treatment of IJHT resulted in the release of cytochrome c into cytosol, loss of mitochondrial membrane potential (${\Delta}{\Psi}_m$), decrease in anti-apoptotic Bcl-2, and an increase in pro-apoptotic Bax expression. Thus, IJHT induced apoptosis in HepG2 cells via activation of caspase and mitochondria pathway. These results indicate that IJHT has potential as an anti-cancer agent.

Oleanolic acid 3-acetate, a minor element of ginsenosides, induces apoptotic cell death in ovarian carcinoma and endometrial carcinoma cells via the involvement of a reactive oxygen species-independent mitochondrial pathway

  • Jo, Hantae;Oh, Jeong-Hyun;Park, Dong-Wook;Lee, Changho;Min, Churl K.
    • Journal of Ginseng Research
    • /
    • v.44 no.1
    • /
    • pp.96-104
    • /
    • 2020
  • Objectives: Oleanolic acid, a minor element of ginsenosides, and its derivatives have been shown to have cytotoxicity against some tumor cells. The impact of cytotoxic effect of oleanolic acid 3-acetate on ovarian cancer SKOV3 cells and endometrial cancer HEC-1A cells were examined both in vivo and in vitro to explore the underlying mechanisms. Methods: Cytotoxic effects of oleanolic acid 3-acetate were assessed by cell viability, phosphatidylserine exposure on the cell surface, mitochondrial release of cytochrome C, nuclear translocation of apoptosis-inducing factor, depolarization of mitochondrial transmembrane potential (∆Ψm), and generation of reactive oxygen species (ROS). In vivo inhibition of tumor growth was also assessed with xenografts in immunocompromised mice. Results: Oleanolic acid 3-acetate exhibited potent cytotoxicity toward SKOV3 and HEC-1A cells by decreasing cell viability in a concentration-dependent manner. Importantly, oleanolic acid 3-acetate effectively suppressed the growth of SKOV3 cell tumor xenografts in immunocompromised mice. Furthermore, oleanolic acid 3-acetate induced apoptotic cell death as revealed by loss of ∆Ψm, release of cytochrome c, and nuclear translocation of apoptosis-inducing factor with a concomitant activation of many proapoptotic cellular components including poly(ADP-ribose) polymerase, Bcl-2, and caspases-8, caspase-3, and caspase-7. Oleanolic acid 3-acetate, however, caused a decrease in ROS production, suggesting the involvement of an ROS-independent pathway in oleanolic acid 3-acetate-induced apoptosis in SKOV3 and HEC-1A cells. Conclusion: These findings support the notion that oleanolic acid 3-acetate could be used as a potent anticancer supplementary agent against ovarian and endometrial cancer. Oleanolic acid 3-acetate exerts its proapoptotic effects through a rather unique molecular mechanism that involves an unconventional ROS-independent but mitochondria-mediated pathway.

Apoptotic Cell Death of Human Lung Carcinoma A549 Cells by an Aqueous Extract from the Roots of Platycodon grandiflorum (길경 수용액 추출물에 의한 인체 폐암세포의 apoptosis 유발에 관한 연구)

  • 이성열;이재훈;김원일;배송자;박동일;최영현
    • Journal of Life Science
    • /
    • v.13 no.2
    • /
    • pp.154-162
    • /
    • 2003
  • Platycodi Radix, the root of Platycodon grandiflorum, commonly known as Doraji, is used as a traditional oriental medicine. Extracts from the roots of P grandiflorum have been reported to have wide ranging health benefits. In the present study, we investigated the effects of an aqueous extract from the roots of P. grandiflorum (AEPG) on the growth of human lung carcinoma A549 cells. Upon treatment with AEPG, a concentration-dependent inhibition of cell growth was observed and cells developed many of the hallmark features of apoptosis, including condensation of chromatin. Flow cytometry analysis confirmed that AEPG increased populations of apoptotic-sub Gl phase. Immunoblot and quantitative RT-PCR analyses indicated that the expressions of Bcl-2 was down-regulated but Bax was up-regulated in AEPG-treated A549 cells. The expression of active form of caspase-3 by AEPG treatment was markedly increased, and the levels of poly(ADP-ribose) polymerase (PARP) and $\beta$-catenin, its target proteins, were decreased in a concentration dependent manner. Taken together, these findings suggest that P. grandiflorum has strong potential for development as an agent for prevention against human lung cancer.

Antiproliferative Effect and Apoptotic Mechanism of Extract of Corydalis Yanhusuo on Human Hepatocarcinoma Cells (현호색(玄胡索)이 인체간암세포 증식억제 및 apoptosis 유발에 미치는 영향)

  • Oh, Myun- Taek;Eom, Hyun-Sup;Chi, Gyoo-Yong
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.21 no.6
    • /
    • pp.1437-1449
    • /
    • 2007
  • In this study, the effect of extract of Corydalis yanhusuo (ECT) used in Oriental medicine therapy was investigated on the cell growth and apoptosis of HepG2 human hepatoma cells. It was found that ECT could inhibit the cell growth effectively in a dose-dependent manner, which was associated with morphological change and apoptotic cell death such as formation of apoptotic bodies, DNA fragmentation and increased populations of apoptotic-sub G1 phase. And we observed the effects of ECT on loss of mitochondrial membrane potential (MMP), using the JC-1 probe by DNA flow cytometric analysis. Apoptosis of HepG2 cells by ECT was associated with a down-regulation of anti apoptotic Bcl-2 expression, inhibitor of apoptosis proteins (IAPs) expression and proteolytic activation of caspase-3 and caspase-9. However, ECT did not affect the pro-apoptotic Bax expression and activity of caspase-8. ECT treatment also concomitant degradation and /or inhibition of poly (ADP-ribose) polymerase (PARP), phospholipase C-1 ($PLC{\gamma}1$). Furthermore, ECT treatment caused a dose-dependent inhibition of iNOS and cyclooxygenase-2 (Cox-2). Additionally ECT have been implicated in the regulation of telomerase expression. ECT treatment induced the down-regulation of telomerase reverse transcriptase mRNA (hTERT) expression of HepG2 cells. Taken together, these findings suggest that ECT may be a potential chemotherapeutic agent for the control of HepG2 human hepatoma cells.

Characterization of H460R, a Radioresistant Human Lung Cancer Cell Line, and Involvement of Syntrophin Beta 2 (SNTB2) in Radioresistance

  • Im, Chang-Nim;Kim, Byeong Mo;Moon, Eun-Yi;Hong, Da-Won;Park, Joung Whan;Hong, Sung Hee
    • Genomics & Informatics
    • /
    • v.11 no.4
    • /
    • pp.245-253
    • /
    • 2013
  • A radioresistant cell line was established by fractionated ionizing radiation (IR) and assessed by a clonogenic assay, flow cytometry, and Western blot analysis, as well as zymography and a wound healing assay. Microarray was performed to profile global expression and to search for differentially expressed genes (DEGs) in response to IR. H460R cells demonstrated increased cell scattering and acidic vesicular organelles compared with parental cells. Concomitantly, H460R cells showed characteristics of increased migration and matrix metalloproteinase activity. In addition, H460R cells were resistant to IR, exhibiting reduced expression levels of ionizing responsive proteins (p-p53 and ${\gamma}$-H2AX); apoptosis-related molecules, such as cleaved poly(ADP ribose) polymerase; and endoplasmic reticulum stress-related molecules, such as glucose-regulated protein (GRP78) and C/EBP-homologous protein compared with parental cells, whereas the expression of anti-apoptotic X-linked inhibitor of apoptosis protein was increased. Among DEGs, syntrophin beta 2 (SNTB2) significantly increased in H460R cells in response to IR. Knockdown of SNTB2 by siRNA was more sensitive than the control after IR exposure in H460, H460R, and H1299 cells. Our study suggests that H460R cells have differential properties, including cell morphology, potential for metastasis, and resistance to IR, compared with parental cells. In addition, SNTB2 may play an important role in radioresistance. H460R cells could be helpful in in vitro systems for elucidating the molecular mechanisms of and discovering drugs to overcome radioresistance in lung cancer therapy.

A5E promotes Cell growth Arrest and Apoptosis in Non Small Cell Lung Cancer

  • Bak, Ye Sol;Ham, Sun Young;O, Baatartsogt;Jung, Seung Hyun;Choi, Kang Duk;Han, Tae Young;Han, Il Young;Yoon, Do-Young
    • Journal of Applied Biological Chemistry
    • /
    • v.57 no.2
    • /
    • pp.113-122
    • /
    • 2014
  • A5E is complex of several medicinal herb ethanol extracts. The aim of this study is investigating the anticancer effect for non-small cell lung cancer. The antitumor effects of A5E on NCI-H460 were examined by regulation of cell proliferation, apoptosis, cell cycle arrest, mitochondrial membrane potential (${\Delta}{\Psi}_m$), and apoptosis-related protein. Cell proliferation was measured by MTS assay. Apoptosis induced by A5E was confirmed by Annexin V-fluorescein isothiocyanate (FITC)/Propidium Iodide (PI) staining, and cell cycle arrest was measured by PI staining. NF-${\kappa}B$ translocation was detected by immunofluorescence and MMP (${\Delta}{\Psi}_m$) was measured by JC-1 staining. The expression of extrinsic pathway molecules such as FasL and FADD were elevated, and procaspase-8 was processed by A5E. In addition, intrinsic pathway related molecules were altered. The Bcl-2 and Bcl-xl levels decreased, Bax increased, and cytochrome C was released. In addition, the mitochondrial membrane potential collapsed, and caspase-3 and poly-(ADP-ribose) polymerase were processed by A5E. Moreover, A5E affected the cellular survival pathway involving phosphatidylinositol 3-kinase (PI3K)/Akt and NF-${\kappa}B$. PI3K and Akt were downregulated, also NF-${\kappa}B$ expression was decreased, and nuclear translocalization was inhibited by A5E. These results suggested that A5E delays proliferation, inhibit cell cycle progression and induce apoptosis in human lung cancer cell. We conclude that A5E is a potential anticancer agent for human lung carcinoma.

The Effect of Rice Bran Extract on the Apoptosis Induction of HL-60 Leukemia Cells (미강(Rice Bran) 추출물의 HL-60 백혈병 세포 Apoptosis 유도 효과)

  • Kim, Eun-Ji;Moon, Jungsun;Kang, Jung-Il;Lee, Young-Ki;Koh, Young-Sang;Yoo, Eun-Sook;Kang, Hee-Kyoung;Yim, Dongsool
    • Korean Journal of Pharmacognosy
    • /
    • v.44 no.3
    • /
    • pp.269-274
    • /
    • 2013
  • In this study, we investigated the anticancer effect of rice bran extract in HL-60 human promyelocytic leukemia cells. The extract of rice bran inhibited the proliferation of HL-60 cells. When treated with the rice bran extract, we could observe the apoptotic characteristics such as apoptotic bodies and the increase of sub-G1 hypodiploid cell population, increase of Bax level, decrease of Bcl-2 expression, cleavage of procaspase-3, cleavage of procaspase-9 and cleavage of poly(ADP-ribose) polymerase(PARP) in HL-60 cells. Furthermore, the apoptosis induction of HL-60 cells treated with the rice bran extract was also accompanied by the inactivation of mitogen-activated protein kinases (MAPK) such as ERK1/2 MAPK and p38 MAPK. In addition, the rice bran extract induced the down-regulation of c-myc. These data suggested that the rice bran extract could induce the apoptosis via the inactivation of ERK1/2 MAPK and p38 MAPK, and the down-regulation of c-myc in HL-60 acute pomyelocytic leukemia cells. The results support that the rice bran extract might have potential for the treatment of acute promyelocytic leukemia.

Study of The Apoptotic Mechanisms of Gunbibosinhangam-tang on Human Neuroblastoma Cell Line BE2 (Human Neuroblastoma Cell Line BE2에 대한 건비보신항암탕(健脾補腎抗癌湯)의 세포고사 기전 연구)

  • Cho, Young-Kee;Moon, Mi-Hyun;Lee, Seong-Kyun;Jeong, Hyun-Ae;Lee, Jung-Sub;Nam, Sang-Kyu;Moon, Goo;Shin, Sun-Ho;Kim, Dong-Woung
    • The Journal of Internal Korean Medicine
    • /
    • v.27 no.3
    • /
    • pp.725-736
    • /
    • 2006
  • Objective: In order to investigate cell death mechanisms by Gunbibosinhangam-Tang(G.B.H) in cancer cells, the activities of apoptosis signaling pathway were tested in human neuroblastoma cell line BE2. Methods: Viability of BE2 cells was markedly decreased by treatment of the water extract of G.B.H in a dose-dependent manner. G.B.H-induced cell death was confirmed as apoptosis characterized by chromatin condensation, We tested whether the water extract of G.B.H affects the anti-apoptotic proteins such as Bcl-$X_L$ Results: Bcl-$X_L$ was uneffected by the addition of the water extract of G.B.H in a time-dependent manner. Cleavage of PARP(poly-ADP-ribose polymerase) by activation of caspase-8 protease was also observed in BE2 cells by the treatment of the water extract of G.B.H. Conclusion: These results suggest that the water extract of G.B.H exerts anti-cancer effects on human neuroblastoma BE2 cells by inducing the apoptotic death via activation of intrinsic caspase cascades.

  • PDF