• 제목/요약/키워드: poly (ethyleneimine)

검색결과 8건 처리시간 0.03초

pH 의존 특성을 갖는 Poly(ethylene-alt-maleic anhydride)/Poly(4-vinyl pyridine) 다층막의 염료 흡착 및 방출 거동 연구 (pH-Dependent Dye Adsorption and Release Behaviors of Poly(ethylene-alt-maleic anhydride)/poly(4-vinyl pyridine) Multiplayer Films)

  • 흥숙영;이준열
    • 폴리머
    • /
    • 제29권6호
    • /
    • pp.593-598
    • /
    • 2005
  • Layer-by-layer(LbL) 자기 조립법에 의한 poly(ethylene-alt-maleic anhydride)(PEMAh)/poly(4-vinyl pyridine)(P4VP) 다층막의 염료 흡착 거동 및 pH 변화에 의한 염료 방출 거동을 Rodamine 6G(R6G)를 지시제로 사용하여 조사하였다. UV-vis 분광 분석을 이용하여 (PEMAh/P4VP)n 다층막의 두께 및 R6G의 흡착 및 방출 거동을 조사하였다. 다층막에 흡착되는 R6G의 흡착량은 필름의 두께 증가에 따라 선형적으로 증가하였다. (PEMAhAh/P4VP)n 다층막의 투과성은 pH 조건에 민감한 거동을 보였으며, 방출액의 pH가 감소할수록 R6G 방출 속도와 방출량은 증가하였다. PEMAh/poly(ethyleneimine)(PEI) capping layer를 (PEMAh/P4VP)n 다층막에 추가로 적층함으로써 흡착된 R6G의 방출 속도를 조절할 수 있었다.

향오일을 함유한 Poly(ε-caprolactone)/Poly(ethyleneimine) 마이크로캡슐의 방출거동 (Release Behaviors of Poly(ε-caprolactone)/Poly(ethyleneimine) Microcapsules Containing Fragrant Oil)

  • 박수진;석수자
    • Korean Chemical Engineering Research
    • /
    • 제43권4호
    • /
    • pp.482-486
    • /
    • 2005
  • 향오일이 흡착된 $Al_2O_3$를 심물질로 함유한 생분해성 poly(${\varepsilon}$-caprolactone) (PCL)/poly(ethylene imine) (PEI) 마이크로캡슐을 PEI의 함량에 따라 제조하였다. 교반속도 그리고 유화제의 농도에 따른 마이크로캡슐의 직경과 모폴로지는 주사전자현미경을 이용하여 관찰하였고, 열적 거동은 DSC를 통해 알아보았다. 또한, 향오일 방출거동을 알아보기 위해 UV.vis. 흡광광도법으로 흡광도를 측정하여 방출된 향오일의 양을 측정하였다. 실험 결과, PCL/PEI 마이크로캡슐의 입자크기는 교반속도와 유화제의 농도가 증가할수록 감소하였다. 그리고 표면 모폴로지는 PEI의 함량이 증가함에 따라 표면은 변했고, 마이크로캡슐의 용융 엔탈피(${\Delta}H_m$)은 증가하는 것을 확인할 수 있었다. 향오일의 방출속도는 PEI의 함량이 증가함에 따라 증가하는 경향을 나타냈다. 또한, 이는 친수성인 PEI의 함량비가 증가함에 따라 캡슐표면의 친수성 그룹이 증가하였기 때문에 향오일의 확산이 용이하게 되었기 때문인 것으로 판단된다.

중공사형 나노복합막 제조를 이용한 수용액으로부터 저분자량의 염료 분리 연구 (Separation of Low Molecular Weight of Dye from Aqueous Solution Using the Prepared Nano-composite Hollow Fiber Membranes)

  • 박철오;이성재;임지원
    • 멤브레인
    • /
    • 제28권3호
    • /
    • pp.180-186
    • /
    • 2018
  • Polyvinylidene fluoride (PVDF)의 중공사막 표면에 2번 딥코팅하여 layer-by-layer 방식으로 나노복합막을 제조하였다. 1차 코팅에서 poly(vinylsulfonic acid)(PVSA)와 Poly(styrene sulfonic acid)(PSSA)의 농도, 이온세기(Ionic strength, IS) 등을 변화시키며 막을 제조하였으며, 2차 코팅 용액으로는 Poly(ethyleneimine) 10,000 ppm I.S = 0.3으로 고정하였다. 막의 특성평가를 위해 각각의 100 ppm NaCl, $CaSO_4$, $MgCl_2$, 그리고 25 ppm Methyl Orange (MO) 공급액에 대한 막의 투과도와 염배제율을 측정하였다. 코팅용액의 코팅 물질의 농도가 올라갈수록 염배제율이 상승하였으며, 본 실험 조건에서 PVSA보다는 PSSA를 이용하여 제조한 중공사막이 염배제율이 높은 것을 확인하였다. 대표적으로 PSSA 30,000 ppm I.S = 1.0에서 중 공사막을 제조하였을 때 25 ppm MO용액의 투과도 1.848 LMH, 염배제율 76.3%로 가장 높은 값을 나타내었다.

Preparation of novel NF membrane via interfacial cross-linking polymerization

  • Lehi, Arash Yunessnia;Akbari, Ahmad;Soleimani, Hosna
    • Membrane and Water Treatment
    • /
    • 제6권3호
    • /
    • pp.173-187
    • /
    • 2015
  • The goal of present work is the preparation of a novel positively charged nanofiltration (NF) membrane and its development for the cation removal of aqueous solutions. This NF membrane was fabricated by the surface modification of polysulfone (PSf) ultrafiltration support. The active top-layer was formed by interfacial cross-linking polymerization of poly(ethyleneimine) (PEI) with p-xylylene dichloride (XDC) and then quaternized with methyl iodide to form a perpetually positively charged layer. In order to improve the efficiency of nanofiltration membrane, the concentration of PEI, XDC and methyl iodide solutions, PEI coating and cross-linking time have been optimized. As a result, a high water flux and high $CaCl_2$ rejection (1,000 ppm) was obtained for the composite membrane with values of $18.29L/m^2.h$ and 93.62% at 4 bar and $25^{\circ}C$, respectively. The rejections of NF membrane for different salt solutions followed the order of $Na_2SO_4$ < $MgSO_4$ < NaCl < $CaCl_2$. Molecular weight of cut off (MWCO) was calculated via retaining of PEG solutions with different molecular weights that finally, it revealed the Stokes and hydrodynamic radius of 1.457 and 2.507 nm on the membrane selective layer, respectively. The most efficient positively charged nanofiltration membrane exhibited a $Ni^{2+}$ rejection of 96.26% for industrial wastewater from Shamse Hadaf Co. (Kashan, Iran).

글루코스 기반 바이오연료전지를 위한 다양한 분자량의 폴리에틸렌이민을 이용한 글루코스 산화효소 고정화 (Immobilization of Glucose Oxidase using Branched Polyethyleneimines of Various Molecular Weights for Glucose Based Biofuel Cell)

  • 안연주;정용진;권용재
    • Korean Chemical Engineering Research
    • /
    • 제54권5호
    • /
    • pp.693-697
    • /
    • 2016
  • 본 연구에서는 탄소나노튜브(CNT), 글루코스 산화효소(Glucose oxidase, GOx) 및 다양한 분자량의 가지달린 폴리에틸렌이민(Polyethyleneimine, branched, bPEI)을 물리적으로 결합하여 GOx/PEI/CNT 구조를 제조한 뒤, 가교제인 테레프타랄데하이드(Terephthalaldehyde, TPA)와 알돌축합반응을 통해 TPA/[GOx/bPEI/CNT] 구조의 촉매를 합성하였으며, 각각의 전기화학적 특성 및 장기안정성 등을 평가하였다. GOx/PEI/CNT의 경우, PEI의 분자량의 증가에 따라 유의한 차이를 확인할 수 없었으나, TPA 도입한 TPA/[GOx/bPEI/CNT]는 PEI 분자의 증가에 따라 전자전달 및 장기안정성은 향상되며 글루코스의 물질전달은 감소함을 확인하였다. 또한 효소연료전지 음극 촉매로서의 최적 bPEI 분자량을 확인한 결과, 750 k PEI를 이용한 촉매(TPA/[GOx/bPEI-750k/CNT]에서 최고의 최대전력밀도($0.995mW{\cdot}cm^{-2}$)를 얻을 수 있음을 확인하였다.

Improved Photovoltaic Performance of Inverted Polymer Solar Cells using Multi-functional Quantum-dots Monolayer

  • Moon, Byung Joon;Lee, Kyu Seung;Kim, Sang Jin;Shin, Dong Heon;Oh, Yelin;Lee, Sanghyun;Kim, Tae-Wook;Park, Min;Son, Dong Ick;Bae, Sukang
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.400.1-400.1
    • /
    • 2016
  • Interfacial engineering approaches as an efficient strategy for improving the power conversion efficiencies (PCEs) of inverted polymer solar cells (iPSCs) has attracted considerable attention. Recently, polymer surface modifiers, such as poly(ethyleneimine) (PEI) and polyethylenimine ethoxylated (PEIE), were introduced to produce low WF electrodes and were reported to have good electron selectivity for inverted polymer solar cells (iPSCs) without an n-type metal oxide layer. To obtain more efficient solar cells, quantum dots (QDs) are used as effective sensitizers across a broad spectral range from visible to near IR. Additionally, they have the ability to efficiently generate multiple excitons from a single photon via a process called carrier multiplication (CM) or multiple exciton generation (MEG). However, in general, it is very difficult to prepare a bilayer structure with an organic layer and a QD interlayer through a solution process, because most solvents can dissolve and destroy the organic layer and QD interlayer. To present a more effective strategy for surpassing the limitations of traditional methods, we studied and fabricated the highly efficient iPSCs with mono-layered QDs as an effective multi-functional layer, to enhance the quantum yield caused by various effects of QDs monolayer. The mono-layered QDs play the multi-functional role as surface modifier, sub-photosensitizer and electron transport layer. Using this effective approach, we achieve the highest conversion efficiency of ~10.3% resulting from improved interfacial properties and efficient charge transfer, which is verified by various analysis tools.

  • PDF

글루코스산화효소와 금나노로드 입자의 다층막으로 구성된 촉매를 이용하여 측정한 글루코스 센싱에 대한 연구 (A Study on Glucose Sensing Measured by Catalyst Containing Multiple Layers of Glucose Oxidase and Gold Nano Rod)

  • 정용진;현규환;한상원;민지홍;천승규;고원건;권용재
    • 한국수소및신에너지학회논문집
    • /
    • 제26권2호
    • /
    • pp.179-183
    • /
    • 2015
  • In this study, we propose a catalyst structure including enzyme and metal nano rod for glucose sensing. In the catalyst structure, glucose oxidase (GOx) and gold nano rod (GNR) are alternatingly immobilized on the surface of carbon nanotube (CNT), while poly(ethyleneimine) (PEI) is inserted in between the GOx and GNR to fortify their bonding and give them opposite polarization ($[GOx/GNR]_nPEI/CNT$). To investigate the impact of $[GOx/GNR]_nPEI/CNT$ on glucose sensing, some electrochemical measurements are carried out. Initially, their optimal layer is determined by using cyclic voltammogram and as a result of that, it is proved that $[GOx/GNR/PEI]_2/CNT$ is the best layer. Its glucose sensitivity is $13.315{\mu}AmM^{-1}cm^{-2}$. When it comes to the redox reaction mechanism of flavin adenine dinucleotide (FAD) within $[GOx/GNR/PEI]_2/CNT$, (i) oxygen plays a mediator role in moving electrons and protons generated by glucose oxidation reaction to those for the reduction reaction of FAD and (ii) glucose does not affect the redox reaction of FAD. It is also recognized that the $[GOx/GNR/PEI]_3/CNT$ is limited to the surface reaction and the reaction is quasi-reversible.