• Title/Summary/Keyword: poly(oxyethylene)

Search Result 35, Processing Time 0.028 seconds

Synthesis and Characterization of Nanocomposite Films Consisting of Vanadium Oxide and Microphase-separated Graft Copolymer

  • Choi, Jin-Kyu;Kim, Yong-Woo;Koh, Joo-Hwan;Kim, Jong-Hak;Mayes, Anne M.
    • Macromolecular Research
    • /
    • v.15 no.6
    • /
    • pp.553-559
    • /
    • 2007
  • Nanocomposite films were prepared by sol-gel synthesis from vanadium triisopropoxide with $poly((oxyethylene)_9$ methacrylate)-graft-poly(dimethyl siloxane), POEM-g-PDMS, producing in situ growth of vanadium oxide within the continuous ion-conducting POEM domains of micro phase-separated graft copolymer. The formation of vanadium oxide was confirmed by wide angle x-ray scattering (WAXS) and Fourier transform infrared (FT-IR) spectroscopy. Small angle x-ray scattering (SAXS) revealed the spatially-selective incorporation of vanadium oxide in the POEM domains. Upon the incorporation of vanadium oxide, the domain periodicity of the graft copolymer monotonously increased from 17.2 to 21.0 nm at a vanadium content 14 v%, above which it remained almost invariant. The selective interaction of vanadium oxide with POEM was further verified by differential scanning calorimetry (DSC) and FT-IR spectroscopy. The nanocomposite films exhibited excellent mechanical properties $(l0^{-5}-10^{-7}dyne/cm^2)$, mostly due to the confinement of vanadium oxide in the POEM chains as well as the interfaces created by the microphase separation of the graft copolymer.

Preparation of Al@Fe2O3 Core-Shell Composites Using Amphiphilic Graft Copolymer Template

  • Patel, Rajkumar;Kim, Sang Jin;Kim, Jin Kyu;Park, Jung Su;Kim, Jong Hak
    • Korean Chemical Engineering Research
    • /
    • v.52 no.2
    • /
    • pp.209-213
    • /
    • 2014
  • A graft copolymer of poly(vinyl chloride)-g-poly(oxyethylene methacrylate) (PVC-g-POEM) was synthesized via atom transfer radical polymerization (ATRP) and used as a structure-directing agent to prepare $Al@Fe_2O_3$ core-shell nanocomposites through a sol-gel process. The amphiphilic property of PVC-g-POEM allows for good dispersion of Al particles and leads to specific interaction with iron ethoxide, a precursor of $Fe_2O_3$. Secondary bonding interaction in the sol-gel composites was characterized by Fourier transform-infrared (FT-IR) spectroscopy. The well-organized morphology of $Al@Fe_2O_3$ core-shell nanocomposites was observed using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Energy dispersive X-ray (EDX) and X-ray diffraction (XRD) were used to analyze the elemental composition and crystallization structure of the composites.

Pore Size Control of a Highly Transparent Interfacial Layer via a Polymer-assisted Approach for Dye-sensitized Solar Cells

  • Lee, Chang Soo;Lee, Jae Hun;Park, Min Su;Kim, Jong Hak
    • Korean Chemical Engineering Research
    • /
    • v.57 no.3
    • /
    • pp.392-399
    • /
    • 2019
  • A highly transparent interfacial layer (HTIL) to enhance the performance of dye-sensitized solar cells (DSSCs) was prepared via a polymer-assisted (PA) approach. Poly(vinyl chloride)-graft-poly(oxyethylene methacrylate) (PVC-g-POEM) was synthesized via atom-transfer radical polymerization (ATRP) and was used as a sacrificial template. The PVC-g-POEM graft copolymer induced partial coordination of a hydrophilic titanium isopropoxide (TTIP) sol-gel solution with the POEM domain, resulting in microphase separation, and in turn, the generation of mesopores upon calcination. These phenomena were confirmed using Fourier-transform infrared (FT-IR) spectroscopy, UV-visible light transmittance spectroscopy, scanning electron microscopy (SEM), and X-ray diffraction (XRD) analysis. The DSSCs incorporating HTIL60/20 (consisting of a top layer with a pore size of 60 nm and a bottom layer with a pore size of 20 nm) exhibited the best overall conversion efficiency (6.36%) among the tested samples, which was 25.9% higher than that of a conventional blocking layer (BL). DSSC was further characterized using the Nyquist plot and incident-photon to electron conversion efficiency (IPCE) spectra.

Synthesis of Ion Conducting Polymer Having Low Temperature Characteristics : I. Synthesis and Characterization of Amorphous PEO Copolymer (저온특성을 갖는 이온전도성 고분자의 합성 연구 : I. 비정형 PEO 공중합체의 합성 및 분석)

  • 황승식;조창기
    • Polymer(Korea)
    • /
    • v.24 no.1
    • /
    • pp.133-139
    • /
    • 2000
  • Poly(ethylene glycol) with number-average molecular weight (M$_{n}$) of 200 (PEG 200) or 400 (PEG 400) was reacted with various linking agents (CH$_2$Cl$_2$, CH$_2$Br$_2$, CH$_2$I$_2$, Br(CH$_2$)$_3$Br) in the presence of alkali to form of oxyalkylene linked chains. Molecular weights of copolymers were controlled using feed mole ratio of alkali/CH$_2$C1$_2$/PEG. The M$_{n}$ of the polymers measured by end group analysis and that measured by GPC agreed well. Molecuglar weights of polyether copolymers obtained from PEG 200 and PEG 400 were about 500~8500 and 1000~2000, respectively. Polyether copolymers prepared from PEG 400 showed melting points of around 1$0^{\circ}C$. Glass transition temperatures of the copolymers were around -75$^{\circ}C$ and the crystallinity was about 0~25%. The polyether copolymers prepared from PEG 200 had no crystallinity below the M$_{n}$ of 2500. 2500.

  • PDF

SANS Studies on the Formation of PANI Nanoparticles in the Reverse Micelles

  • Sim, Jae-Hyun;Kim, Myung-woong;Park, Sang-wook;Bang, Jeong-Hwa;Sohn, Dae-won
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.2
    • /
    • pp.251-254
    • /
    • 2006
  • The formation of polyaniline (PANI) in the reverse micelles of poly(oxyethylene) nonylphenyl ether, $(NP5, H(CH_2)_9Ph(OC_2H_4)_5OH)$, was investigated by small-angle neutron scattering (SANS). The reverse micellar solution containing initiators in the inner part of reverse micelle was prepared with surfactant (NP5), water, cyclohexane and an initiator (ammonium persulfate (APS)). The core-shell sphere model containing smearing effect reveals that the polymerization occurs on the shell layer of the reverse micelles. Shell thickness averages varied from 48 $\AA$ to 109 $\AA$ with increases of monomer concentration.

Preparation of Oil dispersants using polyoxyethylene Monooleate and Oleyether and its Effect on dispersing efficiency to Bunker B Oil (Polyoxyethylene monooleate 및 oleyther계 유분산제의 제조와 Bunker B유의 분산효율에 미치는 영향)

  • Yeom, Guy-Seol;Kang, Doo-Whan
    • Journal of the Korean Applied Science and Technology
    • /
    • v.12 no.1
    • /
    • pp.59-67
    • /
    • 1995
  • Oil dispersants using polyoxyethylene monooleate, polyoxyethylene oleylether, and poly(oxypropylene-oxyethylene)glycol block copolymer were prepared, and oil dispersant efficiency was measured using vertical shaking flask method to 4 kinds of Bunker B oil with different physical properties by appling the prepared dispersants. Although the dispersant efficiency was differed according to the differences of physical properties of Bunker B oil, the dispersant prepared using polyoxyethylene oleylether was the most effective to disperse the oil into water. The impurities like surfur contained in sample oil have to be removed by filteration to obtain the correct degree of absorption using UV spectrophotometer.

The Effects of Ethanol on Nano-emulsion Prepared by High-energy Emulsification Method (고에너지유화법을 이용하여 제조한 나노에멀젼에 대한 에탄올의 영향)

  • Won, Bo-Ryoung;Park, Soo-Nam
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.35 no.3
    • /
    • pp.179-191
    • /
    • 2009
  • The objective of this study was to investigate the effect of ethanol on the emulsion prepared by poly(oxyethylene) hydrogenated castor oils (HCOs)/oil/ethanol/water system. Emulsions were prepared using homogenizer as high-energy method. To evaluate effect of ethanol on the emulsion, physical properties such as droplet size and size distribution were determined and other components were almost fixed to analyze the effect of ethanol on the surfactant. In case of HCO-20, the droplet diameter was in micrometers and the droplet size was gradually deceased as the ethanol concentration was increased. The droplet diameter of nano-emulsion containing 4.00 % of HCO-30 was shown in nanometers and its mean droplet size was $128.15{\pm}1.06nm$ and the most stable at the 4.25 % of ethanol contents by the Form. 1 and $136.10{\pm}0.99nm$ at the 3.50 % of ethanol contents by the Form. 2. Similarly, the droplet diameter of nano-emulsion containing 4.00 % of HCO-40 and 4.50 % ethanol by the Form. 1 was $115.85{\pm}0.78nm$ and $121.15{\pm}0.35nm$ at the 3.25 % of ethanol by the Form. 2 and both size distributions were also narrow. Finally, the droplet size of nano-emulsion containing 4.00 % of HCO-60 and 2.25 % ethanol was $262.35{\pm}0.64nm$ and the most stable. The higher ethanol concentrations became the smaller size of emulsion became in the microscale emulsion but we determined nano-emulsion had a minimum size at a certain ethanol concentration. The results showed that the breakdown process of this nano-emulsion could be attributed to Ostwald ripening. This study about effect of ethanol on the emulsion showed that ethanol contents to prepare a stable emulsion could be determined as studying the effect of ethanol on the emulsion with the type of surfactants.

Interfacial Phenomena of Dodecyl Ether Sulfates Containing Various Ethylene Oxide(EO) and Isopropylene Oxide(PO) (EO, PO가 부가된 도데실 에테르 황산화물의 계면성)

  • Yoo, Young-Chang;Kim, Sang-Chun;Kim, Tae-Young;Ju, Myung-Jong;Nam, Ki-Dae
    • Applied Chemistry for Engineering
    • /
    • v.7 no.2
    • /
    • pp.299-307
    • /
    • 1996
  • The surface tension of PO added sodium poly(oxyethylene(EO), oxyisopropylene(PO)) dodecyl ether sulfate firstly were slightly lower than EO added sulfate in the concentration range of $10^{-6}{\sim}10^{-3}mol/{\ell}$. And they had lower critical micelle concentration ($10^{-4}{\sim}9{\times}10^{-5}mol/{\ell}$) than general anionic surfactants. The adsorptivity ($2.2{\times}10^{-10}mol/cm^2$) of sodium $(PO)_{10}(EO)_5$ dodecyl ether(compound of PO addition firstly) calculated by Gibbs' adsorption isotherm were higher than that of sodium $(EO)_{10}(PO)_5$, dodecyl ether(compound of EO addition firstly), but were lower than that of sodium dodecyl sulfate (${\Gamma}=3.2{\times}10^{-10}mol/cm^2$). These could be understood that the adsorption areas of compounds were very large because of their high molecular weight. Moreover, PO compounds showed better properties than EO compounds in foamability, emulsifying power for organics (n-hexane, benzene), detergency for the lard, tallow oil mixture and dispersability for iron oxide. It was interpreted in terms of surface properties of the PO compounds. These showed that the interfacial activity become higher when hydrophilic and hydrophobic portion existed in aggoromerated state respectively. The test results of emulsifying power for organics (n-hexane, benzene) showed better for benzene than n-hexane. Eight kinds of sodium (EO, PO) dodecyl ether derivatives showed irregular dispersibilities for polar iron oxide in water dispersed media.

  • PDF

Propylene/Nitrogen Separation Membranes Based on Amphiphilic Copolymer Grafted from Poly(1-trimethylsilyl-1-propyne) (양친성 고분자가 그래프팅된 Poly(1-trimethylsilyl-1-propyne) 기반의 프로필렌/질소 분리막)

  • Park, Cheol Hun;Lee, Jae Hun;Park, Min Su;Kim, Jong Hak
    • Membrane Journal
    • /
    • v.29 no.2
    • /
    • pp.88-95
    • /
    • 2019
  • Hydrocarbons containing carbon double bonds are generally called olefins and it is extensively used in petro-chemical industry as essential base material. Especially, olefins are essential in polymer synthesis and thus the effective separation and purification of olefins from gas mixture are very important and it gives significant positive effect on the future industrial development. In this study, we fabricated polymeric composite membrane based on poly(1-trimethylsilyl-1-propyne) (PTMSP) for propylene/nitrogen separation and enhancement of its separation performance by grafting amphiphilic copolymer. Furthermore, to accelerate facilitated transport for propylene molecules, Ag salt ($AgBF_4$) and ionic liquid ($EMIM-BF_4$) was incorporated to polymer composite membranes. The neat PTMSP membrane exhibited extremely high gas permeance and low gas selectivity due to its high free volume. To address this issue, PTMSP was grafted with poly(oxyethylene glycol methacrylate) (POEM) and poly(ethylene glycol) behenyl ether methacrylate (PEGBEM). Additionally, the additives such as $AgBF_4$ and $EMIM-BF_4$ further increased the propylene permeance, resulting in increment of propylene/nitrogen selectivity.

Fabrication of Polymeric Blend Membranes Using PBEM-POEM Comb Copolymer and Poly(ethylene glycol) for CO2 Capture (PBEM-POEM 공중합체와 Poly(ethylene glycol)의 폴리머 블렌드를 이용한 이산화탄소 분리막 제조)

  • Moon, Seung Jae;Min, Hyo Jun;Kim, Na Un;Kim, Jong Hak
    • Membrane Journal
    • /
    • v.29 no.4
    • /
    • pp.223-230
    • /
    • 2019
  • In this paper, we develop a polymeric blend membrane based on $CO_2$-philic poly(2-[3-(2H-benzotriazol-2-yl)-4-hydroxyphenyl] ethyl methacrylate)-poly(oxyethylene methacrylate) (PBEM-POEM) comb copolymer, which was synthesized by facile free radical polymerization. The PBEM-POEM (PBE) comb copolymer was blended with a commercial oligomer, low-molecular-weight poly(ethylene glycol) (PEG, $M_w=200gmol^{-1}$) with various ratios to prepare $CO_2/N_2$ separation membranes. From the result of $CO_2/N_2$ separation test of the PBE/PEG blend membranes with the various PEG contents, we could conclude that with increasing PEG content, the $CO_2/N_2$ selectivity significantly increased while the CO2 permeability decreased showing trade-off relationship. However, when comparing the performance of the PBE/PEG (9 : 1) with the PBE/PEG (7 : 3) membrane, the $CO_2$ permeance decreased by only 8.3%, while the $N_2$ permeance decreased by 69.1%. Therefore, the $CO_2/N_2$ selectivity dramatically increased from 33.8 to 100.3. This could be because the POEM chains, which account for 80% of the PBE copolymer, favorably interact with PEG and lead to a more compact chain structure, which was confirmed by FT-IR, XRD and SEM analysis. The PBE/PEG (7 : 3) blend membrane had the most optimal gas separation performance, showing a $CO_2$ permeance of 170.5 GPU and $CO_2/N_2$ selectivity of 100.3.