• Title/Summary/Keyword: poly(oxyethylene)

Search Result 35, Processing Time 0.028 seconds

Preparation of Poly(oxypropylene-oxyethylene glycol) Block Copolymers Oil Dispersant and Characteristics of W/O Emulsion to Weathering Crude Oils (Poly(oxypropylene-oxyethylene glycol) Block Copolymer계 유분산제의 제조와 Weathering Crude Oil에 대한 W/O 에멀젼 특성)

  • Kang, Doo-Whan
    • Journal of the Korean Applied Science and Technology
    • /
    • v.20 no.3
    • /
    • pp.204-211
    • /
    • 2003
  • Poly(oxypropylene-oxyethylene glycol) block copolymer(PBC) oil dispersant, which has low toxicity, high biodegradability, and an excellent dispersion efficiency to crude oils and weathered W/O emulsion was prepared by blending PBC, poly(oxyethylene) oleate, and sorbitan monooleate. The dispersing efficiency was measured by swirling flask method. The PBC oil dispersant had an excellent dispersing efficiency to weathered oil products formed as stable W/O emulsion, and the low toxicity, such as 4000 ppm to Oryzias Latipes(24 hr, TLM), Brine Shrimp Artemia(24 hr, TLM).

Anti-thrombogenicity and Surface Structure of a Poly(ester-ether) Consisting of Poly(L-lactic acid) and Poly(oxyethylene-co-oxypropylene) (Poly(L-lactic acid)와 Poly(oxyethylene-co-oxypropylene)을 포함한 생분해성 Poly(ester-ether)형 블록 공중합체의 항혈전성과 표면구조)

  • 이찬우;문성일;홍영기
    • Polymer(Korea)
    • /
    • v.25 no.3
    • /
    • pp.385-390
    • /
    • 2001
  • The A-B-A type block copoly(ester-ether)s consisting of poly(L-lactic acid) (PLLA)(A) and poly(oxyethylene-co-oxypropylene)(B) were prepared to improve the mechanical properties and hydrolyzability of PLLA. The block copolymers showed an improved flexibility due to the incorporation of the soft segments. Then, the same copolymer has an improved anti-thrombogenicity probably due to the specific microphase separation structure in the surface. The AFM of the film of the block copolymer revealed that the surface was quite flat in comparison with that of PLLA. Therefore, the flatness of the surface may be related with the increased anti-thrombogenicity of the copolymer film.

  • PDF

Study on the Chemical Polymerization of Pyrrole in the Presence of Cyclic Poly(oxyethylene)s (환형 폴리옥시에틸렌 존재하의 피롤의 화학적 중합에 관한 연구)

  • 차국찬;김진환;배진영
    • Polymer(Korea)
    • /
    • v.26 no.5
    • /
    • pp.568-574
    • /
    • 2002
  • Inclusion compounds using cyclic poly(oxyethylene)s as host molecules have been used to polymerize pyrrole chemically in aqueous medium. This general synthetic strategy makes it possible to grow rigid aromatic polymers in aqueous medium by chemical oxidation method. It is an easy method to obtain rigid polymers in a very mild manner. Some threaded and water-soluble polypyrroles are obtained, and their characterization is performed by NMR, IR, UV, and MALDI-TOF MS measurements.

Preparation of Polymer Composites Containing Gold Nanonetworks Using an Amphiphilic Poly(oxyethylene) Brush

  • Cha, Sang-Ho;Kim, Jong-Uk;Lee, Jong-Chan
    • Macromolecular Research
    • /
    • v.16 no.8
    • /
    • pp.711-716
    • /
    • 2008
  • We synthesized gold nanonetwork using the amphiphilic polymer brush, poly(oxyethylene) containing decyltri(oxyethylene)thiomethyl ($C_{10}H_{21}(OCH_2CH_2)_3SCH_2-$) side groups, as a stabilizer and/or a template. When tetrabutylammonium borohydride solution in THF was added to a mixture solution of the polymer and $LiAuCl_4$ in THF, 0-D gold nanomaterials were obtained. However, when an aqueous solution of sodium borohydride was added, gold nanonetworks were synthesized. The composites composed of polymer/0-D gold nanomaterials and polymer/gold nanonetworks showed electrical conductivities of ${\sim}10^{-9}$ and ${\sim}10^{-3}S/cm$, respectively, which indicated that the gold nanonetworks increased the electrical conductivity.

Formation of Silver Nanoparticles in Polystyrene-b-Poly(oxyethylene methacrylate) Block Copolymer Membranes (Polystyrene-b-Poly(oxyethylene methacrylate) 블록 공중합체 막을 이용한 은 나노입자 생성)

  • Koh, Joo-Hwan;Seo, Jin-Ah;Roh, Dong-Kyu;Kim, Jong-Hak
    • Membrane Journal
    • /
    • v.20 no.1
    • /
    • pp.55-61
    • /
    • 2010
  • A diblock copolymer of polystyrene-b-poly(oxyethylene methacrylate) (PS-b-POEM) was synthesized via atom transfer radical polymerization (ATRP), as revealed by FT-IR spectroscopy. The self-assembled block copolymer membrane was prepared and used to template the growth of silver nanoparticles in the solid state by the introduction of $AgCF_3SO_3$ precursor and UV irradiation process. Transmission electron microscopy (TEM) and UV-visible spectroscopy confirmed the in situ formation of silver nanoparticles within the block copolymer membranes, and the size of nanoparticles were controlled by adjusting the moiety of hydrophilic POEM domains. PS-b-POEM block copolymer with a lower POEM content was effective in generating smaller size of metal nanoparticles.

Synthesis and Properties of Triblock and Multiblock Copolymers Consisting of Poly(L-lactide) and Poly(oxyethylene-co-oxypropylene)

  • Lee, Chan-Woo;Kang, Young-Goo;Kun Jun
    • Macromolecular Research
    • /
    • v.9 no.2
    • /
    • pp.84-91
    • /
    • 2001
  • Both A-B-A triblock and multiblock copoly(ester-ether)s consisting of poly(L-Lactide) and poly(oxyethylene-co-oxypropylene) were prepared and characterized. The preparation of the triblock copolymer was done by ring-opening copolymerization of L-lactide with a commercially available telechelic copolyether, Pluronic$\^$TM/(PN) by catalysis of stannous octanoate. The molecular weight and unit composition of the produced copolymers were successfully controlled by changing the L-lactide/PN ratio in feed. However, a high molecular weight copolymer incorporating PN in large amount was not obtained because the molecular weight of the resulting copolymer was limited at a high L-lactide/PN composition. The multiblock copolymer was synthesized by the copolycondensation of oligo(L-lactic acid) prepared by thermal dehydration of L-lactic acid, PN, and dodecanedioic acid as carboxyl/hydroxyl adjusting agent. This polycondensation proceeded by catalysis of stannous oxide to give multiblock copolymers with high molecular weight and wide range of compositions.

  • PDF

Synthesis of Dodecyl Ether Sulfates Containing Various Ethylene Oxide and Isopropylene Oxide (EO, PO가 부가된 도데실 에테르 황산화물의 합성)

  • Yoo, Young-Chang;Rho, Sung-Ho;Ju, Myung-Jong;Nam, Ki-Dae
    • Applied Chemistry for Engineering
    • /
    • v.7 no.2
    • /
    • pp.289-298
    • /
    • 1996
  • Eight kinds of poly(oxyethylene, oxyisopropylene) dodecyl ethers were synthesized by adding ethylene oxide and isopropylene oxide with each 5 and 10 moles alternatively on dodecanol. The addition of EO and PO for eight kinds of sodium poly(oxyethylene, oxyisopropylene) dodecyl ether sulfates was identified with HPLC, $^1H$ NMR, hydroxy value, and IR spectrum. In order to verify the sulfation the number of EO and PO molecules was obtained by spectra and Epton method. The yields of products sulfated by chlorosulfonic acid were 90~96%.

  • PDF

Preparation and Characterization of Plasticized Poly(vinyl chloride)-g-Poly(oxyethylene methacrylate) Graft Copolymer Electrolyte Membranes (가소화된 Poly(vinyl chloride)-g-Poly(oxyethylene methacrylate) 가지형 고분자 전해질막 제조 및 분석)

  • Seo, Jin-Ah;Koh, Jong-Kwan;Koh, Joo-Hwan;Kim, Jong-Hak
    • Membrane Journal
    • /
    • v.21 no.3
    • /
    • pp.222-228
    • /
    • 2011
  • Poly(vinyl chloride)-g-poly(oxyethylene methacrylate) (PVC-g-POEM) graft copolymer was synthesized via atom transfer radical polymerization (ATRP) and used as an electrolyte for electrochromic device. Plasticized polymer electrolytes were prepared by the introduction of propylene carbonate (PC)/ethylene carbonate (EC) mixture as a plasticizer. The effect of salt was systematically investigated using lithium tetrafluoroborate ($LiBF_4$), lithium perchlorate ($LiClO_4$), lithium iodide (LiI) and lithium bistrifluoromethanesulfonimide (LiTFSI). Wide angle X-ray scattering (WAXS) and differential scanning calorimetry (DSC) measurements showed that the structure and glass transition temperature ($T_g$) of polymer electrolytes were changed due to the coordinative interactions between the ether oxygens of POEM and the lithium salts, as supported by FT-IR spectroscopy. Transmission electron microscopy (TEM) showed that the microphase-separated structure of PVC-g-POEM was not greatly disrupted by the introduction of PC/EC and lithium salt. The plasticized polymer electrolyte was applied to the electrochromic device employing poly(3-hexylthiophene) (P3HT) conducting polymer.