• Title/Summary/Keyword: poly(ethylene-co-propylene)

Search Result 26, Processing Time 0.02 seconds

PEO/PPC based Composite Solid Electrolyte for Room Temperature Operable All Solid-State Batteries (상온에서 작동되는 전고체전지 용 PEO/PPC 기반의 복합 고체 전해질)

  • Shin, Sohyeon;Kim, Sunghoon;Cho, Younghyun;Ahn, Wook
    • Journal of the Korean Electrochemical Society
    • /
    • v.25 no.3
    • /
    • pp.105-112
    • /
    • 2022
  • For the commercialization of all-solid-state batteries, it is essential to develop a solid electrolyte that can be operable at room temperature, and it is necessary to manufacture all-solid-state batteries by adopting materials with high ionic conductivity. Therefore, in order to increase the ionic conductivity of the existing oxide-based solid, Li7La3Zr2O12 (LLZO) doped with heterogeneous elements was used as a filler material (Al and Nb-LLZO). An electrolyte with garnet-type inorganic filler doped was prepared. The binary metal element and the polymer mixture of poly(ethylene oxide)/poly(propylene carbonate) (PEO/PPC) (1:1) are uniformly manufactured at a ratio of 1:2.4, The electrochemical performance was tested at room temperature and 60 ℃ to verify room temperature operability of the all-solid-state battery. The prepared composite electrolyte shows improved ionic conductivity derived from co-doping of the binary elements, and the PPC helps to improve the ionic conductivity, thereby increasing the capacity of all-solid-state batteries at room temperature as well as 60 ℃. It was confirmed that the capacity retention rate was improved.

Characteristics of Li-ion battery using polymeric gel electrolytes reinforced with glass fiber cloth (유리섬유 cloth가 보강된 겔상의 고분자 필름을 전해질로 이용한 리튬이온 전지의 특성)

  • Park Ho Cheol;Kim Sang Hern;Chun Jong Han;Ko Jang Myoun;Jo Soo Ik;Sohn Hun-Joon
    • Journal of the Korean Electrochemical Society
    • /
    • v.3 no.2
    • /
    • pp.100-103
    • /
    • 2000
  • Polymeric gel electrolytes based on polyacrylronitile blended with poly(vinylidene fluoride-co-hexafluoro-propylene)(P(VdF-co-HFP), which were reinforced with glass fiber cloth(GFC) to increase the mechanical strength, were prepared for the practical use in secondary battery. Test cell consisting of $LiCoO_2$ as a cathode and mesophase pich-based ca.bon fiber (MCF) as an anode material showed a capacity of 110 mAh/g based on the cathode weight at 0.2C rate at room temperature. Over $80\%$ of initial capacity was retained after 400cycles, indicating that GFC is suitable for a reinforcing material to increase the mechanical strength of gel based electrolytes.

Blend Films of Poly(acrylic acid-co-maleic acid) with Poly(vinyl alcohol) (I) : Thermo-mechanical Properties and Gas Permeability (폴리(비닐 알코올)과 폴리(아크릴산-말레산) 공중합체의 블렌드 필름 (I) : 열적-기계적 성질 및 가스 투과도)

  • Ham Shin-Kyun;Jung Min-Hye;Chang Jin-Hae
    • Polymer(Korea)
    • /
    • v.30 no.4
    • /
    • pp.298-304
    • /
    • 2006
  • Blends of poly (acrylic acid-co-maleic acid)(PAM) with poly (vinyl alcohol)(PVA) were obtained by solution blending. The blends were solvent-on to a film to examine thermo-mechanical properties and gas permeability. The transition temperatures $(T_g\;and\;T_m)$ of the blends remained constant regardless of PAM contents. However, the values of enthalpy changes corresponding to melting transition $({\Delta}H_m)$ and initial degradation temperature $({T_D}^i)$ were decreased with increasing PAM content. The values of ultimate strength and initial modulus gave the maximum value at the 12 wt% PAM then decreased with further increase of PAM content up to 15 wt%. To measure the gas permeability of the PVA/PAM blend films, the PVA blend solutions were coated onto both biaxially oriented propylene (BOPP) and poly (ethylene terephthalate)(PET) films. The oxygen transmission rate $(O_2\;TR)$ permeability values mono- tonically decreased with increasing PAM content. However, moisture vapor transmission rate was not affected by PAM content.

New Liquid Crystal-Embedded PVdF-co-HFP-Based Polymer Electrolytes for Dye-Sensitized Solar Cell Applications

  • Vijayakumar, G.;Lee, Meyoung-Jin;Song, Myung-Kwan;Jin, Sung-Ho;Lee, Jae-Wook;Lee, Chan-Woo;Gal, Yeong-Soon;Shim, Hyo-Jin;Kang, Yong-Ku;Lee, Gi-Won;Kim, Kyung-Kon;Park, Nam-Gyu;Kim, Suhk-Mann
    • Macromolecular Research
    • /
    • v.17 no.12
    • /
    • pp.963-968
    • /
    • 2009
  • Liquid crystal (LC; E7 and/or ML-0249)-embedded, poly(vinylidenefluoride-co-hexafluoropropylene) (PVdF-co-HFP)-based, polymer electrolytes were prepared for use in dye-sensitized solar cells (DSSCs). The electrolytes contained 1-methyl-3-propylimidazolium iodide (PMII), tetrabutylammonium iodide (TBAI), and iodine ($I_2$), which participate in the $I_3^-/I^-$ redox couple. The incorporation of photochemically stable PVdF-co-HFP in the DSSCs created a stable polymer electrolyte that resisted leakage and volatilization. DSSCs, with liquid crystal(LC)-embedded PVdF-co-HFP-based polymer electrolytes between the amphiphilic ruthenium dye N719 absorbed to the nanocrystalline $TiO_2$ photoanode and the Pt counter electrode, were fabricated. These DSSCs displayed enhanced redox couple reduction and reduced charge recombination in comparison to that fabricated from the conventional PVdF-co-HFP-based polymer electrolyte. The behavior of the polymer electrolyte was improved by the addition of optimized amounts of plasticizers, such as ethylene carbonate (EC) and propylene carbonate (PC). The significantly increased short-circuit current density ($J_{sc}$, $14.60\;mA/cm^2$) and open-circuit voltage ($V_{oc}$, 0.68 V) of these DSSCs led to a high power conversion efficiency (PCE) of 6.42% and a fill factor of 0.65 under a standard light intensity of $100\;mW/cm^2$ irradiation of AM 1.5 sunlight. A DSSC fabricated by using E7-embedded PVdF-co-HFP-based polymer electrolyte exhibited a maximum incident photon-to-current conversion efficiency (IPCE) of 50%.

A research of thermoplastic elastomer PP(Poly Propylene)/SEBS(Styrene Ethylene Butylene Styrene) blends (열가소성 탄성중합체인 PP/SEBS 혼합 연구)

  • Han, Hyun Kak
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.8
    • /
    • pp.562-570
    • /
    • 2018
  • New physical properties of polymer materials were obtained by blending two or three different type of polymers. TPE is used widely in the display, automotive and electronics industries. Consumers have sought emotionally more sensitive and advanced interior automotive parts. A polymer with high foamibility (Ed note: Please check this.) and flowability would be more plausible. TPE composed of foam is a good polymer material to satisfy these trends. In this research, two different TPE were tested, focusing on foamibility and flowability. Two type of TPE were prepared. The first was blended Homo-PP, oil and SEBS. The second was Co-PP, oil and SEBS. The blending temperatures were $180^{\circ}C$, $190^{\circ}C$, and $260^{\circ}C$(second one). The blending speed was 50rpm and blending time was 5 min. The MI of the blended material was affected by the MI of PP and not affected by the blending temperature. The hardness and tensile elasticity were less affected by the MI of PP and blending temperature. The hardness and tensile elasticity were lower at a higher SEBS/Oil content ratio. The soft touch feel was higher with high SEBS/Oil contents. The IPN (Interpenentration polymer network) structure was observed by dissolving the SEBS/Oil layer in xylene. Strain-hardening phenomena also was observed. TPE behaves in a rubber and foamed closed-cell improved its stability.

Preparation of Polymer Gel Electrolyte for EDLCs using P(VdF-co-HFP)/PVP (P(VdF-co-HFP)/PVP를 이용한 EDLC용 고분자 겔 전해질의 제조)

  • Jung, Hyun-Chul;Jang, In-Young;Kang, An-Soo
    • Applied Chemistry for Engineering
    • /
    • v.17 no.3
    • /
    • pp.243-249
    • /
    • 2006
  • Porous polymer gel electrolytes (PGEs) based on poly(vinylidenefluoride-co-hexafluoropropylene) (P(VdF-co-HFP)) as a polymer matrix and polyvinylpyrolidone (PVP) as a pore-forming agent were prepared and electrochemical properties were investigated for an electric double layer capacitor (EDLC) in order to increase a permeability of an electrolyte into the PGE. Propylene carbonate (PC) and ethylene carbonate (EC) as plasticizers, and tetraethylammonium tetrafluoroborate ($TEABF_4$) as a supporting salt for the PGE were used. EDLC unit cells were assembled with the PGE and electrode comprising BP-20 and MSP-20 as activated carbon powders, Super P as a conducting agent, and P(VdF-co-HFP)/PVP as a mixed binder. Ion conductivity of PGEs increased with an increased PVP content and was the best at 7 wt% PVP, whereas electrochemical characteristics such as AC-ESR of unit cell were better in 3 wt%. And electrochemical characteristics of the unit cell with PGE were the best at a 33 : 33 weight ratio of PC to EC. Specific capacitance of a mixed plasticizer system of PE and EC was higher than that of pure PC. Ion conductivity of PGEs with a film thickness of $20{\mu}m$ was higher, but electrochemical characteristics of unit cells were higher for a $50{\mu}m$ membrane thickness. Also, the unit cell has shown the highest capacitance of 31.41 F/g and more stable electrochemical performance when PGE and electrode were hot pressed. Consequently, the optimum composition ratio of PGE for EDLCs was 23 : 66 : 11 wt% such as P(VdF-co-HFP) : PVP = 20 : 3 wt% and PC : EC = 44 : 22 wt%. In this case, $3.17{\times}10^{-3}S/cm$ of ion conductivity was achieved at the $50{\mu}m$ thickness of PGE for EDLCs. And the electrochemical characteristics of unit cells were $2.69{\Omega}$ of DC-ESR, 28 F/g of specific capacitance, and 100% of coulombic efficiency.