• Title/Summary/Keyword: poly(2-vinyl pyridine)

Search Result 17, Processing Time 0.025 seconds

Dispersion Polymerization of Styrene Employing Lyophilic Comonomer in the Absence of Stabilizer: Synthesis of Impurity-free Microspheres

  • Han, Hye-Kyung;Lee, Jeong-Woo;Hong, Jin-Ho;Shim, Sang-Eun
    • Macromolecular Research
    • /
    • v.17 no.7
    • /
    • pp.469-475
    • /
    • 2009
  • We investigated the feasibility of dispersion polymerization without any stabilizer, which has been considered essential for ensuring colloidal stability. By employing small amounts of a lyophilic comonomer, 4-vinyl pyridine, styrene was successfully polymerized by dispersion polymerization in aqueous alcohol without stabilizer to afford stable poly(styrene-co-4-vinyl pyridine) copolymer microspheres. The stable microspheres were produced in the 4-vinyl pyridine range of 2-15 wt% to styrene. Without 4-vinyl pyridine, severely coagulated particles were obtained, implying that the poly(4-vinyl pyridine) moiety endowed colloidal stability. The polymerization kinetics, behavior, and properties of the ultimate particles showed general features of dispersion polymerization. The study results suggest that stabilizer- tree dispersion polymerization is possible, thereby facilitating the synthesis of impurity(stabilizer)-tree polymer particles.

Dispersion Behavior of Graphene with Different Solvents and Surfactants (용매와 분산제의 종류에 따른 그래핀의 분산 거동)

  • Perumal, Suguna;Lee, Hyang Moo;Cheong, In Woo
    • Journal of Adhesion and Interface
    • /
    • v.20 no.2
    • /
    • pp.53-60
    • /
    • 2019
  • Stable graphene dispersions in various organic solvents and in water were achieved via noncovalent functionalization of graphene surfaces using different types of commercially available surfactants. Stable dispersions were obtained in short time sonication, 3 h. In NMP, graphene with Tween and Span series, and with Pluronic surfactants showed stable dispersions. In ethanol, nitrogen based surfactants showed stable dispersions. In water and dichloromethane partially stable graphene dispersions were obtained using poly(4-vinyl pyridine) and sodium dodecyl sulfonate surfactants. Large scale productions of stable dispersions were successful using poly(4-vinyl pyridine), poly(vinyl pyrrolidone), and poly(2-(dimethylamino)ethyl methacrylate). Thus, this work will serve as a library to select the surfactants for different solvent systems.

Preparation and Evaluation of Poly(vinyl pyridine) Copolymers for Organic Solderability Preservatives (유기솔더 보존제용 폴리(비닐 피리딘) 공중합체의 합성 및 특성평가)

  • Im, Jeong-Hyuk;Lee, Hyun-Jun;Huh, Kang-Moo;Kim, Chang-Hyeon;Lee, Hyo-Soo;Lee, Chang-Soo;Choi, Ho-Suk
    • Polymer(Korea)
    • /
    • v.30 no.6
    • /
    • pp.519-524
    • /
    • 2006
  • Poly(4-vinyl pyridine) (PVP) and its copolymers, poly(4-vinyl pvridine- co-acrylamide) and poly(4-vinyl pyridine-co-allylamine), were synthesized and evaluated for application to organic solder-ability preservatives (OSP). The copolymers were synthesized by radical polymerization of vinyl pyridine in the presence of acrylamide or allylamine as a comonomer. Various kinds of polymers with different chemical composition were synthesized by varying the feed ratio of monomers and their low $M_w$ polymers can be obtained by adding 2-mercaptoethanol as a chain transfer agent during poly-merization. All the polymers showed good adhesion properties on Cu pad when they were spin-coated. Especially, allylamine -containing copolymers showed both good adhesion and solubility properties. Also, they exhibited better thermal stability than PVP homopolymer and such thermal properties were changed depending on the chemical composition and their $M_w$, which were evidenced by the measurement of oxygen induced temperature (OIT). From the OIT measurement, poly(4-vinyl pyridine- co-allylamine) was thermally stable up to $230^{\circ}C$ for 70 min in the 100% oxygen environment. As a result, allylamine-containing copolymers can be considered as a promising OSP coating material that has excellent thermal and adhesive properties applicable to the present microelectronic package processes.

Membrane from Liquid Crystal Composite of Cellulose Acetate and Poly (4-vinyl pyridine) (셀룰로오스 아세테이트와 폴리비닐 피리딘 액정중합체의 박막에 관한 연구)

  • Hong, Young-Keun;Cho, Bong-Heuy
    • Textile Coloration and Finishing
    • /
    • v.3 no.2
    • /
    • pp.43-48
    • /
    • 1991
  • Cellulose acetate (CA) and poly-4-vinyl pyridine (PVP) in various weight proportions were mixed in a mixed solvent of trifluoroacetic acid: methylene chloride/6:4 (v:v). CA was miscible with PVP in that solvent system. CA/PVP/solvent show liquid crystal in a certain range of concentration and the nature of that liquid crystal was cholesteric. Films of the liquid crystal composite cast from the liquid crystal solutions of CA/PVP were tested in a viewpoint of biomembrane. Results show that considering permselectivity CA/PVP membrane is better than that of CA and CA/PVP membrane is closer to cell membrane.

  • PDF

Effect of PEO of PS-P2VP photonic gel films

  • Shin, Sung-Eui;Kim, Su-Young;Shin, Dong-Myung
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.1405-1407
    • /
    • 2009
  • We prepared polystyrene-b-poly(2-vinyl pyridine) (PSb-P2VP) lamellar films which is hydrophobic block-hydrophilic polyelectrolyte block polymer have 57 kg/mol-b-57 kg/mol. The result of UV-visible absorption spectra supported that effect of poly(ethylene oxide) on the band gap tuning of PS-P2VP photonic gel like salt effect.

  • PDF

Pervaporation of Pyridine-Water Mixture throuoh Poly(acrylonitrile-co-vinyl phosphonic acid) membrane (폴리(아크릴로니트릴-비닐포스포닉산) 공중합체 막을 이용한 피리딘-물 혼합물의 투과증발분리)

  • Park, C.H.;Nam, S.Y.;Kim, Y.;Lee, Y.M.;Kujawski, Wojciech
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1998.04a
    • /
    • pp.89-92
    • /
    • 1998
  • 1. Introduction : Among many azeotropic compounds, pyridine which forms an azeotropic mixture with three moles of water boiling at 92-93$\circ$C is very useful synthetic intermediate in laboratory and industry. With conventional separation method, the dehydration of pyridine aqueous solution is difficult and requires strong drying chemicals. To overcome these difficulties, several researchers have investigated on the separation of pyridine from aqueous solution through polymer membranes. Kujawski reported several ion-exchang membranes containing carboxylic and sulfonic fuctional group for dehydration of aqueous pyridine solution [1]. We have applied the idea of activation of water tranport through ion-dipole interactions between polymer membrane and aclueous feed. Our previous studies reported on the in-situ complex membrane to separate water from aqueous pyridine solution based on simple acid'-base theory [2, 3]. Water transport was enhanced through in-situ complex formation between the , acid moiety in the membrane and the incoming pyridine moiety in the feed.

  • PDF

Modification of SBR Latex and its Adhesion Characteristic (SBR Latex의 개질 및 접착특성)

  • Kim, Goo-Ni;Chun, Yong-Chul;Oh, Sang-Taek;Park, Seung-Hyeun;Lee, Chang-Ho;Yoo, Chong-Sun;Min, Byung-Kwon
    • Elastomers and Composites
    • /
    • v.29 no.5
    • /
    • pp.444-452
    • /
    • 1994
  • Emulsion graft copolymerizations of vinyl monomers, butyl acrylate(BA), methyl methacrylate(MMA), 2-ethylhexyl acrylate (EHA), glycidyl methacrylate (GMA), 2-hydroxyethyl methacrylate(HEMA), methacrylonitrile(MAN), dimethylaminoethyl methacrylate(DAMA) or 2-vinyl pyridine(VP), onto carboxyl-terminated SBR latex were carried out under different experimental conditions. In case of synthesizing SBR-g-poly(butyl acrylate), the degree of grafting was increased with increasing the amount of emulsifier, polymerization temperature and the amount of initiator. Pull-out strength of resorcinol-formaldehyde-latex(RFL) adhesives formulated with modified latexes was very higher than that of RFL adhesive formulated with ungrafted latex. When the modified latexes with GMA, HEMA, MAN, DAMA or VP were used, the break occurred at cords. Peel strength of RFL adhesives formulated with SBR-g-poly(GMA), SBR-g-poly(HEMA) or SBR-g-poly(VP) was higher by about 1.3 times than that of RFL adhesives formulated with unmodified SBR against nylon cord and was higher by about 2.0 times against polyester cord.

  • PDF

Surface Micelle Formation of Polystyrene-b-Poly(2-vinyl pyridine) Diblock Copolymer at Air-Water Interface

  • Park, Myunghoon;Bonghoon Chung;Byungok Chun;Taihyun Chang
    • Macromolecular Research
    • /
    • v.12 no.1
    • /
    • pp.127-133
    • /
    • 2004
  • We have studied the surface micelle formation of polystyrene-b-poly(2-vinyl pyridine) (PS-b-P2VP) at the air-water interface. A series of four PS-b-P2VPs were synthesized by anionic polymerization, keeping the PS block length constant (28 kg/㏖) and varying the P2VP block length (1, 11, 28, or 59 kg/㏖). The surface pressure-area ($\pi$-A) isotherms were measured and the surface morphology was studied by atomic force microscopy (AFM) after Langmuir-Blodgett film deposition onto silicon wafers. At low surface pressure, the hydrophobic PS blocks aggregate to form pancake-like micelle cores and the hydrophilic P2VP block chains spread on the water surface to form a corona-like monolayer. The surface area occupied by a block copolymer is proportional to the molecular weight of the P2VP block and identical to the surface area occupied by a homo-P2VP. It indicates that the entire surface is covered by the P2VP monolayer and the PS micelle cores lie on the P2VP monolayer. As the surface pressure is increased, the $\pi$-A isotherm shows a transition region where the surface pressure does not change much with the film compression. In this transition region, which displays high compressibility, the P2VP blocks restructure from the monolayer and spread at the air-water interface. After the transition, the Langmuir film becomes much less compressible. In this high-surface-pressure regime, the PS cores cover practically the entire surface area, as observed by AFM and the limiting area of the film. All the diblock copolymers formed circular micelles, except for the block copolymer having a very short P2VP block (1 kg/㏖), which formed large, non-uniform PS aggregates. By mixing with the block copolymer having a longer P2VP block (11 kg/㏖), we observed rod-shaped micelles, which indicates that the morphology of the surfaces micelles can be controlled by adjusting the average composition of block copolymers.

Adsorption Equilibrium of Bovine Serum Albumin Protein on Porous Polymer Microgels (다공성 고분자 마이크로겔의 Bovine Serum Albumin 단백질의 흡착평형)

  • Kim, Kong-Soo;Kang, Seog-Ho
    • Applied Chemistry for Engineering
    • /
    • v.9 no.2
    • /
    • pp.311-316
    • /
    • 1998
  • The adsorption equilibrium properties of bovine serum albumin(BSA-protein) for three kinds of porous microgels with different physical and chemical features were investigated. The adsorption amount of BSA-protein on poly(butyl methacrylate)(PBMA) microgels was higher than those on poly(vinyl pyridine)(PVP) and poly(acrylonitrile) (PAN) microgels due to the hydrophobic interaction between polymer and protein in an aqueous solution. And PBMA microgels had more irreversible adsorption equilibrium properties the PVP and PAN microgels. It implies that hydrophobic interaction plays a more important role in adsorption properties of BAS-protein than physical properties of polymer and electrostatic attraction between protein and polymer microgels. Characteristics of the microgels used in this study followed Langmuir equation better than the Freundlich equation.

  • PDF

Tunable Photonic Band Gap Materials and Their Applications

  • Gang, Yeong-Jong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.261-261
    • /
    • 2010
  • Photonic band gap (PBG) materials have been of great interest due to their potential applications in science and technology. Their applications can be further extended when PBG becomes tunable against various chemical and electrical stimuli. In recent, it was found that tunable photonic band gap materials can be achieved by incorporating stimuli-responsive smart gels into PBG materials. For example, the characteristic volume phase transition of gels in response to the various external stimuli including temperature, pH, ionic strength, solvent compositions and electric field were recently combined with the unique optical properties of photonic crystals to form unprecedented highly responsive optical components. Since these responsive photonic crystals are capable of reversibly converting chemical or electrical energy into characteristic optical signals, they have been considered as a good platform for label-free chemical or biological detection, actuators or optical switches as well as a model system for investigating gel swelling behavior. Herein, we report block copolymer photonic gels self-assembled from polystyrene-b-poly (2-vinyl pyridine) (PS-b-P2VP) block copolymers. In this talk, we are going to demonstrate that selective swelling of lamellar structure can be effectively utilized for fabricating PBG materials with extremely large tunability. Optical properties and their applications will be discussed.

  • PDF